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SUMMARY

When combining information across different
senses, humans need to flexibly select cues of a
common origin while avoiding distraction from irrele-
vant inputs. The brain could solve this challenge us-
ing a hierarchical principle by deriving rapidly a fused
sensory estimate for computational expediency and,
later and if required, filtering out irrelevant signals
based on the inferred sensory cause(s). Analyzing
time- and source-resolved humanmagnetoencepha-
lographic data, we unveil a systematic spatiotem-
poral cascade of the relevant computations, starting
with early segregated unisensory representations,
continuing with sensory fusion in parietal-temporal
regions, and culminating as causal inference in the
frontal lobe. Our results reconcile previous compu-
tational accounts of multisensory perception by
showing that prefrontal cortex guides flexible inte-
grative behavior based on candidate representations
established in sensory and association cortices,
thereby framing multisensory integration in the
generalized context of adaptive behavior.

INTRODUCTION

We experience the world via multiple sensory modalities. Where

information arrives simultaneously in two modalities with

differing reliability, the most precise estimates are formed

when signals are combined in proportion to their relative reli-

ability. For example, imagine trying to follow a drama on a broken

television. If the TV audio is faulty, a viewer should rely more on

the picture to follow the narrative, and vice versa. One influential

theory suggests that the brains of humans and other animals

have evolved to implement this reliability-weighting principle

when judging sensory signals (Alais and Burr, 2004; Angelaki

et al., 2009; Ernst and B€ulthoff, 2004; Raposo et al., 2012). A

challenge for the nervous system, however, is that sensory sig-

nals should only be fused when they originate from a common
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source. For instance, if there is a chance that a film is dubbed,

combining information about lip movements with prosody will

render the dialogue difficult to understand. To meet this chal-

lenge, the brain must infer the probability that sensory signals

share a common cause (or, to continue the example, that the

film was dubbed or not). There is evidence from psychophysics

that our brain indeed carries out causal inference (CI) to achieve

behavioral flexibility during multisensory integration (Körding

et al., 2007; Kayser and Shams, 2015). For example, when local-

izing auditory and visual signals, we tend to fuse thesewhen they

likely originate from nearby sources, but not when they originate

from disparate locations, suggesting that the probability of

fusion is determined by high-level inference over the probable

cause(s) of sensation (De Corte et al., 2018; Körding et al.,

2007; Rohe and Noppeney, 2015a, 2015b; Wozny et al., 2010).

Reliability-weighted fusion and CI have complementary costs

and benefits. Fusion may allow rapid inference through frugal

computations—for example, implemented in feedforward cir-

cuits (Ma et al., 2006; Ohshiro et al., 2011, 2017)—and serves

as a good rule of thumb for many circumstances that give rise

to correlated multimodal signals (Parise and Ernst, 2016). CI

permits adaptive behavior but may be slower and more compu-

tationally costly, as it requires inference to be carried out over

potential states of the world (Kayser and Shams, 2015). We do

not understand how the brain arbitrates between the expediency

of fusing multimodal signals and the imperative to perform CI in

service of optimal perception. One possibility is that the brain

hedges its bets by both computing a rapid fused estimate and,

later and where required, inferring the likely cause(s) of multi-

modal signals. This prediction can be evaluated using time-

resolved neuroimaging methods, such as magnetoencephalog-

raphy (MEG), that are equipped to measure how neural signals

unfold during a single decision.

Here, combining amultivariate analysis approach toMEGdata

with computational modeling of behavior, we asked where in the

brain and when neural signals predicted by models of sensory

fusion and CI emerge during perception. In line with past results,

wepredicted that fusedestimateswould beemerging rapidly and

in parietal-temporal association cortices (Beauchamp et al.,

2004a; Boyle et al., 2017; Calvert, 2001; Macaluso and Driver,

2005). We further reasoned that CI would rely at least in part on

the frontal cortex, a structure that is thought to subserve causal
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Figure 1. Computational Models

Schematic of different sensory causal structures

giving rise to visual and acoustic stimuli. Top of

(A) to (C): inferred causality. Bottom: probability

distribution of the perceived stimulus feature

(e.g., event rate here) and of the sensory esti-

mate derived under different assumptions about

the causal structure. Solid/dashed distributions

indicate conditions with high/low auditory reli-

ability. Upside-down triangle(s) represent the

mean(s) of the distribution(s), with gray denoting

task-relevant cue (Vis. in this figure) and

colored denoting final estimates under different

causal structures (solid versus empty for high

versus low reliability of task-irrelevant cue,

respectively).

(A) Assuming separate sources for two stimuli

(cause [c] = 2) leads to a sensory estimate that

reflects the most likely stimulus in the task-rele-

vant modality.

(B) The assumption of a common source leads to

the integration of both senses (reliability-weighted

fusion).

(C) With causal inference, the two hypotheses

about the causal structures (c = 1 or c = 2) are

combined probabilistically. The final Bayesian

estimate combines the unisensory (task-relevant)

and the fused estimates, each weighted by its

inferred probability based on an a priori integration

tendency (STAR Methods).

(D) Each candidate model predicts a unique relationship between crossmodal disparity (distinct visual versus auditory rates are characterized by a

large disparity) and bias (deviation of the final estimate from the true attribute). The shaded area corresponds to the example shown in (A) to (C), i.e., visual

rate < auditory rate.
reasoning and sensory conflict resolution across a wide range of

tasks (Donoso et al., 2014; Giordano et al., 2017; Koechlin and

Summerfield, 2007; Noppeney et al., 2010; Tomov et al., 2018).

Using a multisensory rate-categorization paradigm, we show

that flexible multisensory behavior is best described by a

Bayesian causal inference model. We also find that the neural

representations of sensory fusion and inference unfold hierar-

chically in time and across brain regions. This comprises a

cascade from early unisensory encoding in primary sensory

cortices to reliability-weighted fusion in parietal-temporal

cortices and to CI primarily in the frontal lobe. We find that neural

representations within the dorsomedial and ventrolateral PFC

are directly predictive of categorical choices and that the vlPFC

subserves a particular behavioral benefit of inferring sensory

causes to minimize perceptual bias in discrepant crossmodal

contexts. Our results reconcile previous rival computational

models of multisensory integration (Figure 1) by showing that

distinct computational strategies are orchestrated as a temporal

sequence and along a parietal-frontal hierarchy. These results

also suggest that the neurocomputational mechanisms underly-

ing flexible multisensory perception can be understood in amore

general framework of causal reasoning that subserves adaptive

behavior in ambiguous environments.

RESULTS

Fifteen human volunteers participated in an audiovisual rate cate-

gorization task (four-choice speeded judgement; Figure 2A) while
their brain activitywasmeasuredusingmagnetoencephalography

(MEG). The stimuli consisted of a temporal sequence of audiovi-

sual pulses (flutter and flicker; duration of the entire sequence

was 550 ms) presented at four possible repetition rates (9.1,

12.7, 16.4, or 20 Hz; i.e., number of pulses/s). In separate blocks,

participants were instructed to report either the auditory or visual

rate as task-relevant information and signaled their response

withabuttonpress.Unlikeparadigms that focusonsensory fusion

by requiring explicit use of both sensory modalities (Ernst and

B€ulthoff, 2004), our task permits the analysis of individual and flex-

ible strategies inprocessingmultisensorycuesbasedon their task

relevance. To quantify how the discrepancy of crossmodal infor-

mation influences behavior (Körding et al., 2007), wemanipulated

visual and auditory rates independently (i.e., they could be either

congruent or incongruent across trials; Figure 2B). To quantify

the reliability-dependent influence of one modality onto another

(Angelaki et al., 2009), we varied the signal-to-noise ratio of the

acoustic information. The paradigm thus comprised a factorial 4

(visual rates) by 4 (auditory rates) by 2 (auditory reliabilities) by 2

(task relevance) design (see STAR Methods).

Modeling Behavior
We compared the predictions of three classes of models about

participants’ behavior. Each model encodes probability distribu-

tions over sensory signals and incorporates rules that govern

how a prior belief about the sensory causal structure is combined

with incoming information to judge the event rate in the task-rele-

vant modality (Figure 1). Specifically, we considered (1) a model
Neuron 102, 1076–1087, June 5, 2019 1077
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Figure 2. Behavioral Paradigm and Data

Analysis

(A) In separate blocks, participants reported either

the auditory or visual rate as task-relevant infor-

mation in a 4-choice speeded categorization task.

The panel illustrates the structure of a multisen-

sory trial.

(B) The experimental design featured 4 orthogonal

factors: visual andauditory rates, auditory reliability,

and task-relevant modality (visual versus auditory).

(C) Model comparison: CI (causal inference), with

decision strategy of MA (model averaging), PM

(probability matching), or MS (model selection).

Fusion: a linear combination of audiovisual infor-

mation following a belief in a common cause;

Segregation: focus on a single modality following

a belief in separate causes. Red curves, protected

exceedance probability Pexc (STAR Methods);

gray bars, expected posterior probabilities; error

bars, standard deviation (SD) of posterior proba-

bilities; dashed lines, chance level (p = 0.2).

(D) Rate estimates as predicted by the winning CI

model in comparison with observed (trial-aver-

aged) rates. Each dot represents an individual

condition of one participant. R2 = generalized

coefficient of determination.

(E) Model comparison (CI (MA) versus Fusion

versus Segregation) as a function of disparity

confirms the leading role of CI, specifically at high

disparities. CI dominance is measured as the

mean goodness-of-fit (GOF) difference (log-likeli-

hood, BIC or AICc; mean across Fusion - CI and

Segregation - CI), and the protected Pexc of CI

(against Fusion and Segregation, using both BIC

and AICc model evidence, same as in C).

Congruent: disparity = 0 Hz (16 conditions), small:

disparity = 3.64 Hz (24 conditions), large:

disparity > 3.64 Hz (24 conditions).

(F) Crossmodal bias, reflecting the disparity-

dependent influence of the task-irrelevant cue.

Reported rates are grouped by task (T) and auditory reliability (AR). Disparity is signed: visual minus auditory rate.

(G) Standardized regression coefficients quantifying the influence of task (T; visual task minus auditory task), auditory reliability (AR; low minus high), and the

linear and quadratic effects of the absolute disparity on the absolute bias (STARMethods). Red asterisk, significant (2-sided permutation tests; family-wise-error

corrected p % 0.05); error bars, ± 1 SEM (n = 15); circles, participant-specific betas. See also Tables S1 and S2 and Figure S1.
of ‘‘sensory segregation,’’ (2) a model for reliability-weighted

‘‘sensory fusion’’ (Ernst and B€ulthoff, 2004), and (3) Bayesian

models of multisensory ‘‘causal inference’’ (Körding et al.,

2007; Wozny et al., 2010).

These models make distinct predictions about how the

perceived event rate varies with experimental manipulations

(crossmodal disparity, i.e., the differencebetweenauditory and vi-

sual rates; cue reliability; and task relevance). One key behavioral

variable is the level of crossmodal bias, i.e., the extent to which

judgements about the relevant modality are biased by the irrele-

vant modality, and how this bias varies with disparity. The segre-

gation model proposes that sensory estimates are fully indepen-

dent and predicts no crossmodal bias. The fusion model instead

predicts a bias that grows linearly with disparity because relevant

and irrelevant sensory signals are fused irrespective of their con-

gruency. This model does, however, predict that bias will scale

with the reliability of individual cues. Finally, the inference model

allows for an additional inference about sensory causality, i.e.,
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that observers allow for some signals to be fused and some to

be segregated and that fusion is more likely for signals that are

similar in rate (Körding et al., 2007; Rohe and Noppeney, 2015b;

Wozny et al., 2010). This inferencemodel predicts that the bias in-

creaseswith disparity and relative cue reliabilities (Rohe andNop-

peney, 2015a), but critically, it predicts that the growth rate of bias

should diminish for highly discrepant information that is unlikely to

originate fromacommonsource, i.e., reflectinganonlineardepen-

dency of bias on disparity, in contrast to the fusionmodel predict-

ing a linear dependency. Hence, among these candidates, only

the inference model reflects the behavioral flexibility to exploit

multisensory information when of benefit, and to otherwise avoid

distraction from cues that likely have an independent origin.

Multisensory Judgments Follow Bayesian Causal
Inference
We determined which candidate model best accounts for partic-

ipants’ behavior. We maximized each model’s log-likelihood of



explaining individual participant’s responses across all condi-

tions and derived the best-fitting model parameters (Table S1

for model comparison; Table S2 for parameter estimates). A

Bayesian causal inferencemodel formulated with a free probabi-

listic belief of common cause (pc) and with a model-averaging

decision strategy, ‘‘CI (MA),’’ explained the data better than

models not incorporating the inference of latent cause(s) (i.e.,

segregation and reliability-weighted fusion, Figure 2C; group-

level Bayesian (BIC) and corrected Akaike Information Criterion

(AICc) relative to CI (MA) R 468 and 547, respectively). Model

averaging here refers to a decision function that averages the

fused and the task-relevant segregated sensory estimates,

each weighted by their inferred probabilities. The CI (MA) also

fared best in random-effects model comparison (Figure 2C; pro-

tected exceedance probability Pexc = 0.967 and 0.989 using BIC

and AICc model evidence, respectively). Other variants of the CI

model with alternative decision strategies (‘‘probability match-

ing’’ and ‘‘model selection,’’ see STARMethods) provided worse

fit than the CI model with model-averaging strategy (protected

Pexc < 0.0062). Across participants, the average coefficient of

determination R2 of this best CI model was 0.87 (SEM =

0.0078; Figure 2D). Quantifying CI model performance as a func-

tion of disparity further emphasized that participants’ behavior

was best explained by CI for discrepant contexts (Figure 2E).

Context-Dependent Cue Weighting
We further examined why CI outperforms the other models in

describing the behavioral responses by using an alternative anal-

ysis. Specifically, we quantified crossmodal bias, defined as the

deviation of participants’ response from the actual task-relevant

rate (Figure 2F), and used a general linear model (GLM) to predict

how themagnitude (i.e., absolute value) of this bias depended on

the contextual factors: task, reliability, and their interaction, as

well as disparity (Figure 2G; all effects were assessed using

maximum-statistics permutation controlling formultiple compar-

isons, family-wise error FWE = 0.05). Importantly, we included an

effect of squared disparity in this model to capture whether the

bias scales nonlinearly with disparity, as predicted by CI, or sim-

ply follows a linear dependency, as predicted by sensory fusion.

A reliability-weighted cue combination is captured by the inter-

action between task and reliability rather than by the main effect

of reliability. This is because reliability was manipulated only for

the acoustic signal, which, under reliability-based cueweighting,

would result in different biases for the two tasks. Indeed, this

GLM revealed no main effects of task (t(14) = 1.84, mean b =

0.097, SEM = 0.053) and auditory reliability (t(14) = 1.91, mean

b = 0.043, SEM = 0.022) but a significant interaction between

task relevance and auditory reliability (t(14) = �6.36, mean b =

�0.16, SEM = 0.025). Lastly, the GLM revealed a significantly

negative effect of squared disparity (t(14) = �9.28, mean b =

�0.21, SEM = 0.022), confirming a reduction of the bias growth

rate for larger disparities (i.e., nonlinear scaling) as suggested

by CI.

As expected, reaction times (RTs) also varied systematically

with the experimental manipulations (Figures S1A and S1B). In

particular, participants’ responses were generally slower (yet

with RT increasing nonlinearly) for larger disparity, suggesting

an additional effort required to make judgements facing dispa-
rate multisensory evidence. In addition, the RTs in congruent

multisensory trials were significantly faster than those in unisen-

sory trials with the same rate and task (t(14) = �2.6, p = 0.021;

2-sided paired-sample t test), confirming a general facilitation

of responses by multisensory congruency.

MEG Data Reveal a Spatiotemporal Hierarchy of
Multisensory Representations
Next, we investigated when and where the brain represents sen-

sory information in amanner as predicted by each computational

model. Specifically, we asked whether neural representations

of different candidate computations emerge simultaneously or

sequentially and possibly within the same or across distinct brain

regions. We adopted a multivariate approach using cross-vali-

dated representational similarity analysis (RSA, Walther et al.,

2016). RSA assesses neural representations by quantifying the

statistical association between two dissimilarity matrices: (1)

an MEG representational dissimilarity matrix (RDM) that quan-

tifies the pairwise dissimilarities of brain activity in response to

different experimental conditions and (2) a model RDM that

quantifies the hypothesized computational nature of brain repre-

sentations. The model RDMs were constructed based on the

rate estimates predicted by each model fitted to the behavioral

responses of each participant (Figure 3A). Given the condition-

wise differences in reaction times (Figure S1), we carried out

separate RSAs by aligning the data to stimulus onset and to

trial-by-trial response time.

The results of the stimulus-locked RSA revealed a systematic

and gradual progression of neural representations from segre-

gated unisensory representations to reliability-weighted fusion,

to CI across cortical space and time (Figure 3A; Table 1). We

quantified the selective representation of each model (e.g., CI)

that is not already explained by the representations of other

models (fusion and segregation) using semi-partial correlation

(s.p.r). The earliest MEG activations significantly reflecting one

of the candidate computations (‘‘RSA effects,’’ hereafter) were

those pertaining to segregated unisensory estimates starting

around 100 ms after the stimulus onset. These were localized

within the respective sensory cortices (bilateral calcarine cortex

starting from �100 ms for segregated visual representations;

auditory cortex starting from �140 ms for segregated auditory

representations). Subsequently, the MEG activity began to

reflect sensory representations formed by reliability-weighted

fusion, with significant clusters emerging around 180 ms to

260 ms in the left superior temporal gyrus and later the precu-

neus and superior parietal lobule, the ventral posterior cingulate,

and the posterior superior temporal gyrus. Finally, MEG activity

reflecting representations as predicted by CI emerged around

620 ms in dorso- and ventrolateral prefrontal cortices (the

left inferior frontal cortex, in particular), frontopolar and insular

cortices, and the middle-posterior cingulate cortex.

The results of the response-locked RSA also suggested a dif-

ference between parietal and frontal regions in reflecting fusion

and CI. This revealed an RSA effect of fusion within the parie-

tal-temporal lobe (right precuneus and IPS around �220 ms to

�140 ms prior to response onset; Figure 3A; Table 1) but CI

within the frontal lobe (bilateral IFG and frontal pole around

�220 ms to �140 ms; bilateral superior frontal gyri around
Neuron 102, 1076–1087, June 5, 2019 1079



Figure 3. Spatiotemporal Evolution of Multisensory Representations Revealed by Model-Based Representational Similarity Analysis (RSA)

(A) Upper left: group-averaged model representational dissimilarity matrices (RDMs) visualizing the ranked distance between model-predictions of condition-

wise event rates. The other figures display the cortical surface projection onto a FreeSurfer template of the T-maps of group-level significantMEGactivity uniquely

explained by each model (semi-partial correlation, s.p.r) in stimulus- and response-locked data. All effects were significant at p % 0.05 FWE-corrected (STAR

Methods). The maps show peak T-value of each voxel across time within the respective epoch for visualization purpose. Light empty surfaces denote non-

significance (n.s.).

(B) Anatomical locations of local and global peaks of RSA effects, color coded by the respective significant model (see also Table 1 and Figure S4). See also

Figures S2 and S3.
�180 ms to �100 ms). Encoding of segregation models was no

longer found in this response-locked analysis.

To further substantiate the observation that the representa-

tions of fusion precede those of CI, we explicitly characterized

the temporal sequence of the peak RSA effects for fusion and

CI. We extracted the latency of the peak T statistics of each

RSA effect (Figure S3) and derived a latency contrast for each

pair of the respective ROIs (latency of fusion minus latency of
1080 Neuron 102, 1076–1087, June 5, 2019
CI). Across the 30 pairs of stimulus-locked ROIs, the peak RSA

effects of fusion emerged significantly earlier than those of CI

(two-sided one-sample t test against zero: t(29) = �7.19, p <

10�7, 95%bias-corrected and accelerated [BCa] bootstrap con-

fidence interval of the mean [�0.21, �0.12] s; Figures S3C and

S3D). This result was also confirmed for the response-locked

ROIs (t(23) = �3.24, p = 0.004, 95% BCa bootstrap confidence

interval of the mean [�0.023, �0.006] s; Figures S3E and S3F).



Table 1. Selective Model Encoding in MEG Source Activity

Analysis: Model Anatomical Label Latency T (14) s.p.r (SEM) MNI Coordinates

Stimulus locked: Segregation Visual (SV) Calc-R* 140 ms 18.96 0.126 (0.007) 14 �84 8

Stimulus locked: Segregation Auditory (SA) mSTG/STS-R 180 ms 3.08 0.034 (0.011) 48 �32 �2

HG-R* 220 ms 4.34 0.026 (0.006) 34 �28 12

Stimulus locked: Fusion (FU) pSTG/STS-L 220 ms 2.94 0.021(0.007) �60 �50 8

Prec/SPL-L 500 ms 3.42 0.02 (0.006) �10 �56 62

pSTG/STS-R 500 ms 3.33 0.013 (0.004) 46 �42 16

vPCC-R* 540 ms 4.29 0.02 (0.005) 10 �46 6

FFG-R 540 ms 2.96 0.02 (0.007) 34 �46 �20

Stimulus locked: Causal Inference (CI) pMCC-L* 620 ms 4.26 0.014 (0.003) �10 �14 44

pMCC-R 620 ms 4.03 0.018 (0.004) 10 �22 36

IFGorb-L 620 ms 3.44 0.018 (0.005) �42 24 �8

Insula-L 620 ms 3.39 0.024 (0.007) �38 0 2

MFG-L 620 ms 3.25 0.017 (0.005) �42 48 2

SMG-L 620 ms 2.73 0.012 (0.004) �56 �32 40

Response locked: FU IPS-R* �180 ms 5.14 0.036 (0.007) 34 �52 44

Prec-R �180 ms 5.05 0.037 (0.007) 4 �38 54

CingSmar-R �180 ms 4.39 0.018 (0.004) 14 �28 36

PT-L �180 ms 3.22 0.025 (0.008) �50 �38 8

Response locked: CI IFGopr-L* �180 ms 4.96 0.022 (0.005) �42 10 8

FpolarS-L �180 ms 4.55 0.023 (0.005) �14 60 �12

IFGtri-R �180 ms 4.54 0.018 (0.004) 34 32 12

Insula-R �180 ms 3.65 0.015 (0.004) 32 0 16

SFG-R �140 ms 3.45 0.019 (0.005) 14 20 48

SFG-L �140 ms 3.01 0.01 (0.003) �4 46 36

The table lists global (*) and local peaks of RSA effects. MNI, Montreal Neurological Institute. Anatomical labels are based on Automated Anatomical

Labeling (AAL) and Destrieux atlases. Latency, center of RSA window. s.p.r, group-averaged semi-partial rank correlation between MEG and model

RDM. SEM, standard error of the mean. All reported effects are significant at p% 0.05 FWE corrected (see STARMethods). L/R, left/right hemisphere.

See also Figure S2. HG, Heschl’s gyrus; mSTG/STS, middle superior temporal gyrus/sulcus; pSTG/STS, posterior superior temporal gyrus/sulcus;

Calc, calcarine; Prec, precuneus; SPL, superior parietal lobule; STGlat, lateral superior temporal gyrus; FFG, fusiform gyrus; vPCC, posterior-ventral

cingulate gyrus; SMG, supramarginal gyrus; pMCC, middle-posterior cingulate gyrus and sulcus; IFGorb, inferior frontal gyrus (pars orbitalis); MFG,

middle frontal gyrus. IPS, intraparietal sulcus; PT, planum temporale; CingSmar, marginal branch of the cingulate sulcus; IFGopr, inferior frontal gyrus

(pars opercularis); FpolarS, transverse frontopolar sulcus; IFGtri, inferior frontal gyrus (pars triangularis); SFG, superior frontal gyrus.
Distinct Markers of Sensory Integration in Posterior and
Anterior Brain Regions
Wecharacterized the computational properties of the neural rep-

resentations revealed by theRSA in further detail. Note that these

neural representations are defined both by their location (ROI)

and by latency of the respective RSA effect (Table 1). First, we

quantified the dependency of the crossmodal bias captured by

these representations on the two key features of context-depen-

dent integration: (1) the interaction between task relevance and

sensory reliability, and (2) the quadratic effect of disparity. In

line with the predictions of fusion and inference (CI) models, we

expected fusion regions to exhibit a positive linear dependency

of bias on disparity and an interaction between task and reli-

ability. By contrast, CI regions should exhibit a nonlinear relation-

ship between bias and disparity. For this analysis, we focused on

computation-diagnostic neural representations that potentially

contain these key markers (see STAR Methods).

As expected, a significant task 3 reliability interaction in

shaping bias emerged in all parietal and posterior-temporal
fusion ROIs (t(14) % �4.84, FWE-corrected p < 0.012). We also

found this interaction in the primary auditory cortex (HG-R,

t(14) = �8.34, p < 0.0001) and some ROIs exhibiting RSA CI ef-

fects (SMG and insula; t(14)%�5.45, p < 0.0036; Figure 4A left).

By contrast, the nonlinear dependency of bias on disparity char-

acteristically distinguished CI from fusion ROIs, as only frontal CI

regions (e.g., Fpolar and IFGtri) exhibited such well-pronounced

negative dependency on squared disparity (t(14) % �5.74, p <

0.0022 for the 9 significant CI ROIs in Figure 4A right).

These results suggest a posterior-to-anterior gradient of the

influence of multisensory disparity (Figure 4B). To support this,

we correlated the GLM coefficients of the squared disparity

with the MNI posterior-anterior coordinates of the CI ROIs. For

both stimulus- and response-locked ROIs, this correlation was

significant (t(14) % �6.62, p < 10�5), with across-participants

mean (SEM) of �0.34 (0.05) and �0.68 (0.06), respectively. In

line with an asymmetry between the primary visual and auditory

cortex (Rohe and Noppeney, 2016), we also observed a sig-

nificant negative quadratic influence of disparity in occipital
Neuron 102, 1076–1087, June 5, 2019 1081
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Figure 4. Functional and Anatomical Char-

acterization of the Neural Representations

of Interest

(A) General linear modeling (GLM) of the influence

of the task 3 reliability interaction (signature

of reliability-weighted fusion) and the quadratic

disparity (signature of causal inference) on cross-

modal bias. GLMwas applied to the computation-

diagnostic RDMs from each ROI (see STAR

Methods). Bar height and error bars, mean and

95% bootstrap confidence interval of the stan-

dardized GLM coefficients across participants (cf.

Figure S4 for all ROIs; asterisk = p % 0.05 FWE-

corrected; STAR Methods).

(B) Negative correlation between anatomical MNI

posterior-anterior coordinates and GLM betas for

quadratic disparity across CI ROIs. Dots, individ-

ual participants for each ROI; gray lines, linear fit

for each participant.

(C) Inter-individual difference multidimensional

scaling (MDS) was used to visualize the repre-

sentational geometry of neural RDMs. Experi-

mental conditions that are closer in MDS space

evoke similar computation-diagnostic MEG re-

sponses (STARMethods). For simplicity, we focus

on one region for each model (see Figure S5 for all

ROIs). The two-dimensional (2D) MDS models

emphasize the computational relevance of the two

main dimensions: auditory (horizontal) and visual

rate (vertical); gray lines indicate the neural dis-

tances reflecting crossmodal bias. Shaded green

ellipses highlight the 4 primary clusters separating

conditions associated with the 4 visual rates in

the 2D MDS of Calc-R. Zoomed cluster in 2D

MDS of IFGtri-R illustrates disparity-dependent

nonlinear bias: representations at higher cross-

modal disparity (red circles) being pulled toward

the task-relevant rate (yellow contours). The three-

dimensional (3D) MDS models emphasize the

effects of task relevance and auditory reliability

(color coded). The scatterplots visualize the

neurally encoded disparity against crossmodal

bias. See also Figures S4 and S5.
(Calc-R in Figure 4A, t(14) =�17.6, p = 10�4; also see Figure 4C),

but not temporal, regions.

In a second analysis, we modeled the representational geom-

etries of computation-diagnostic representations using multi-

dimensional scaling (MDS). This projects the neural representa-

tions onto a few axes that capture the dimensions along which

the candidate representations differ (de Leeuw and Mair, 2009;

Ashby et al., 1994). Exemplar ROIs for each computational

model are shown in Figure 4C (see Figure S5 for all ROIs). In early

visual cortex (Calc), the representation varied primarily with vi-

sual rate, irrespective of task and reliability. By contrast, in early

auditory regions (HG), the representations were modulated by

auditory reliability and by task and reflected an influence from

the visual modality, resulting in a seemingly bimodal representa-

tion (2D MDS). In ROIs reflecting fusion (e.g., IPS-R), the repre-

sentational geometry collapsed the rates across modalities

and disparities into a single dimension (leading to large biases)

but changed with reliability (green lines in 3D MDS). Finally, in

ROIs reflecting CI (e.g., IFGtri-R), the representational geometry
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varied with all three factors (nonlinear scaling with disparity in 2D

MDS; reliability and task in 3D MDS) and hence exhibited the

highest computational flexibility among all ROIs.

Complementary Evidence for Sensory Fusion in
Parietal-Temporal Regions and Causal Inference in
Frontal Regions
To further corroborate the parieto-frontal gradient in the neural

representations of sensory fusion (FU) and CI, we implemented

a bootstrap-based comparison of each model-predicted sen-

sory representation in explaining the local pattern ofMEGactivity

based on group-level exceedance probabilities (Pexc).

ROIs with fusion or CI RSA effects exhibited high Pexc for the

respective models, in particular in the response-locked data

(Pexc > 0.88 among all 4 fusion ROIs, with the highest Pexc

(FU) in IPS-R = 0.997; Pexc > 0.81 among all CI ROIs, with the

highest Pexc(CI) around FpolarS-L = 0.979; Figure 5A). In the

stimulus-locked data, the ROIs with CI RSA effects also ex-

hibited high Pexc for CI, and the parietal ROIs with fusion RSA
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Figure 5. Model Comparison Based on Ex-

ceedance Probabilities

Exceedance probabilities (Pexc) index the belief

that a region encodes a given model more likely

than alternative models across participants.

(A) Model Pexc for each of the ROIs derived from

the RSA (cf. Figure 3).

(B and C) Model Pexc within the intraparietal sulcus

(IPS) for comparison with Rohe and Noppeney

(2015b), for stimulus-locked (B) and response-

locked data (C). Left panels: Pexc comparing each

of the four models with all of the alternative models

derived independently for each IPS ROI using

time-averaged RSA statistics (encoding coeffi-

cient r, Fisher Z scale). Right panels: Pexc

comparing time-averaged selective encoding

(s.p.r, Fisher Z scale) of causal inference (CI)

and fusion (FU). Dashed lines, chance level. IPS

ROIs were based on a probabilistic atlas (Wang

et al., 2015).
effects exhibited high Pexc for fusion (Prec/SPL-L, Pexc(FU) =

0.72). Some occipital-temporal regions contain a graded organi-

zation suggesting also a contribution of segregated sensory

representations apart from fusion. The superior temporal

lobe comprised not only regions representing fusion (bilateral

pSTG/STS) but more ‘‘bimodal’’ regions (mSTG/STS) that

maintain the individual unisensory representations.

These results confirm a parieto-frontal gradient whereby the

respective regions predominantly encode the sensory estimates

based on FU and CI. This is seemingly at odds with a previous

study describing a gradient from FU to CI locally within the IPS

(Rohe and Noppeney, 2015b; Pexc approach to fMRI data). To

make the present data directly comparable to this previous

study, we quantified model Pexc within anatomically defined

IPS sub-regions (Wang et al., 2015). This confirmed a gradient

along the posterior-anterior axis of the IPS, with the more poste-

rior regions being dominated by FU and the more anterior re-

gions dominated by CI (Figures 5B and 5C). Hence, while our

data also support a graded representation of CI in the parietal

lobe, the whole-brain analysis here emphasizes a wider network

that chiefly involves the frontal cortex.

Prefrontal Cortex Drives Flexible Behavior in Conflicting
Multisensory Environments
Lastly, we asked which of the candidate ROIs is directly predic-

tive of behavior. The preceding results reveal that multiple re-

gions reflect distinct multisensory computations. Yet, for a given

ROI, a significant model-encoding RSA effect by itself does not

imply a driving role for the full flexibility of participants’ behavior

(Kriegeskorte and Douglas, 2018). Hence, to identify in which

candidate ROIs the MEG activity was directly predictive of par-

ticipants’ responses, we implemented an RSA to assess the as-

sociation between the MEG RDMs and the behavioral RDM (the

pairwise absolute distance between the trial-averaged behav-

ioral responses in different conditions). We focused on the

ROIs identified in the response-aligned data to account for differ-

ences in RT between conditions. As above, we considered each

ROI at its specific latencies of model encoding (see Table 1). The
CI ROIs within the lateral PFC (IFG and SFG) and insula exhibited

significant neuro-behavioral correlations (t(14) R 3.01, FWE-

corrected p % 0.036; Figure 6). An additional contrast between

conditions with large and small crossmodal disparities revealed

that activity within the ventrolateral PFC (IFGtri-R) particularly

predicted behavioral responses when the two modalities were

highly conflicting (t(14) = 2.94, p = 0.043).

DISCUSSION

We characterized the computational strategies in the service

of flexible multisensory integration and identified their time-

resolved underpinnings in source-localized MEG activity. Our

behavioral data suggest that when faced with trial-varying reli-

ability and discrepancy of crossmodal information, humans arbi-

trate between integration and segregation in a manner captured

by Bayesian causal inference. At the neural level, we unveil that

the distinct computations required for flexible multisensory

perception (segregation, fusion, and CI) coexist, but each dom-

inates at different times and in distinct regions. Consistent with

previous reports, these results show that the initially segregated

unisensory signals are fused in temporal and parietal lobes.

However, this fused information gives way to more flexible rep-

resentations formed under multisensory CI in the frontal cortex,

which drive behavior in volatile environments with discrepant

multimodal cues.

Temporal Hierarchy of Multisensory Computations
Previous studies have posed reliability-weighted fusion and CI

as rival accounts of multisensory perception and sought to

obtain empirical evidence that favors one over the other (Acerbi

et al., 2018; Körding et al., 2007; Magnotti and Beauchamp,

2017; Parise et al., 2012; Roach et al., 2006; Rohe and Noppe-

ney, 2015a; Wozny et al., 2010). In the spirit of this endeavor,

we found that human behavior during a rate categorization

task was consistently captured by a CI model. This fared

best in quantitative model comparison and was the only model

able to describe the reduction in crossmodal bias that emerged
Neuron 102, 1076–1087, June 5, 2019 1083
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Figure 6. Contribution of Frontal Regions to Flexible Behavior

(A) RSA was applied to assess the neural representation of behavioral reports (behavioral RDM; left shown, average across participants). Bar height and error

bars, mean and 95% bootstrap confidence intervals.

(B) Disparity-modulated RSA effect of behavioral report was assessed by contrasting brain-behavior correlations between conditions with small and large

disparities (two-sided permutation test; small disparity = 3.64 Hz, large disparity > 3.64 Hz). Asterisk = p % 0.05 FWE-corrected (see STAR Methods).
when sensory cues were most disparate. Critically, the neural

data challenge the dichotomy between fusion and CI as sepa-

rate accounts of multisensory perception. Rather, they support

the notion that perception is a hierarchical process relying

on the explicit representations of distinct multisensory compu-

tations orchestrated over several brain regions (Rohe and

Noppeney, 2015b; Rohe et al., 2019; Kayser and Shams,

2015). Our results suggest that representations as predicted

by each model coexist and unveil the functional hierarchy of

the underlying computations in distinct regions and over

different timescales.

We observed a systematic temporal sequence whereby the

neural underpinnings of sensory segregation and reliability-

weighted fusion were succeeded by those of CI. This cascade

suggests a specific computational scheme for CI at the sys-

tems level: CI effectively relies on a weighted combination of

sensory estimates predicted by fusion and segregated signals

from a posteriori estimates, with the relative contribution de-

pending on the inferred level of crossmodal disparity. Thus,

one may interpret fusion as a component that explicitly feeds

into the computations for inference (Körding et al., 2007;

Rohe and Noppeney, 2015a, 2015b; Wozny et al., 2010).

Consistent with the early emergence of fusion, previous evi-

dence suggests that multisensory integration starts at the level

of early sensory cortices (Kayser and Logothetis, 2007; Lakatos

et al., 2007; Lewis and Noppeney, 2010), and neuroimaging

data support physiological correlates of reliability-weighted

fusion starting around 120 ms post-stimulus onset (Aller and

Noppeney, 2019; Boyle et al., 2017). Along this line, behavioral

studies also suggested that fusion may be a rather automatic

process. For example, crossmodal biases tend to be stronger

when participants respond faster or after acquiring only little

sensory evidence (Noppeney et al., 2010). By contrast, CI re-

quires additional processing time as it capitalizes on evaluating

the degree of sensory discrepancy, maintaining beliefs over

latent causes, and possibly exploring distinct decision strate-

gies. Indeed, the conscious segregation of multimodal cues

that usually tend to be fused requires additional time and effort
1084 Neuron 102, 1076–1087, June 5, 2019
(Gau and Noppeney, 2016). In line with these reports, and

based on a principled assessment of candidate representations

in spatiotemporally resolved brain activity, we demonstrate a

systematic emergence of fused sensory representations within

parietal-temporal regions before those predicted by CI in

frontal regions.

Graded Context-Dependent Computations along
Parietal-Frontal Pathway
Behavior adapts to contextual modulations, such as trial-varying

reliability of individual senses or changes in the congruency of

sensory information (Angelaki et al., 2009; Ma and Pouget,

2008). Previous modeling studies have formalized two hallmarks

of context-dependent integration: (1) giving more credence to

the more reliable modality (Alais and Burr, 2004; Ernst and

B€ulthoff, 2004) and (2) refraining from distraction by irrelevant in-

formation from an apparently distinct causal origin (Körding

et al., 2007; Roach et al., 2006). The observers in our study ex-

hibited both hallmarks as shown by their perceptual biases.

Resolving the sensory conflict and inferring the sensory causal

structure require time, and this was also visible in the nonlinear

dependency of RTs on disparity. Importantly, the observers’

brain activities directly reflected both hallmarks of flexible multi-

sensory computation. Our complementary analysis approaches

to the MEG data, relying on either selective model encoding or

group-level model exceedance probabilities, corroborated a pa-

rieto-frontal gradient reflecting a progression from the neural

representations adapting to sensory reliability to representations

adapting to disparity. While these results resonate with a previ-

ous study suggesting the coexistence of distinct context-depen-

dent multisensory computations (Rohe and Noppeney, 2015b),

our findings elaborate this perspective of computational gradient

along a wider parietal-frontal network that supports CI in more

anterior regions. This view also fits with a general understanding

of the functional differences between parietal and frontal re-

gions, whereby both accumulate sensory information, but

parietal cortex potentially encodes more of the sensory

aspect, whereas frontal regions underlie the context-dependent



transformation of evidence into choice (Erlich et al., 2015; Hanks

et al., 2015).

Across the brain, we observed multiple and functionally het-

erogeneousmultisensory representations onwhich flexible infer-

ence can capitalize (Bizley et al., 2016). First, we found a weak

but noticeable auditory bias in V1, confirming multisensory inter-

actions in early sensory cortex (Kayser and Logothetis, 2007; La-

katos et al., 2007). Second, within the temporal lobe, we revealed

the coexistence of bimodal (in the absence of integration) and

truly fused representations, in line with a topographical organiza-

tion of uni- and multisensory representations (Beauchamp et al.,

2004a). Third, we found that the neural representation of fusion

was stronger in parietal than in temporal regions (Rohe and Nop-

peney, 2016), whichmay pertain to the abstract nature of the rate

stimuli (Chafee, 2013; Raposo et al., 2014). Yet, these regions did

not exhibit the characteristic down-weighting of task-irrelevant

information at larger disparities indicative of inference. Rather,

parietal activity appeared to scale with the task-irrelevant infor-

mation, suggesting that these regions may automatically project

evidence to one dimension (Suzuki and Gottlieb, 2013; Ganguli

et al., 2008; Luyckx et al., 2019).

By contrast, we found that the frontal cortex has a privileged

role in reflecting both hallmarks of context-dependent integra-

tion but features subtle representational variations across re-

gions. Notably, the nonlinear influence of disparity increased

systematically along the posterior-to-anterior axis. While repre-

sentations within more posterior regions (e.g., the insula) appear

to emphasize the reliability-based weighting, representations in

anterior regions mostly depend on disparity (e.g., frontopolar

cortex and inferior frontal gyrus). Such heightened sensitivity of

more anterior regions to the causal structure resonates with

the general hierarchical organization of the PFC, whereby ante-

rior regions are involved in representing abstract rules (Badre

and D’Esposito, 2009). By combining the localization of specific

candidate representations in MEG activity with an analysis prob-

ing their choice-predictability, our results further demonstrate

the behavioral relevance of frontal representations. Here the

more prominent role of the dorsomedial and ventrolateral, rather

than the anterior, PFC in driving behavior fits with the role of

these regions in inferring probable causes of observed contin-

gencies for retrieving goal-relevant behavioral strategies (Do-

noso et al., 2014).

The Frontal Lobe in Multisensory and Domain-General
Inference
A key aspect of behavioral flexibility is the ability to perceive the

environments through multiple senses and to exploit the most

appropriate modalities for the task at hand. Given the role of

the frontal cortex in subserving general reasoning and adaptive

behavior (such as inferring the reliability of different decision

strategies), it is perhaps not surprising that we found the key

driver of flexible multisensory behavior in the frontal lobe (Do-

noso et al., 2014; Koechlin and Summerfield, 2007; Tomov

et al., 2018). Yet, previous studies promoted divergent views

on the neural basis of multisensory perception. In fact, many

studies have emphasized the role of superior temporal and pa-

rietal cortices in sensory integration (Beauchamp et al., 2004b;

Calvert, 2001). In part, this may have arisen from the specific
search for bimodal representations in some studies and for

sensory fusion in others, or the aim to identify the earliest

convergence of multisensory signals (Kayser and Logothetis,

2007). However, neuroanatomical evidence has long implied

the prefrontal cortex as a convergence zone for multisensory

information (Jones and Powell, 1970), with the ventrolateral

prefrontal cortex receiving projections from auditory and visual

cortices and association areas implementing sensory fusion

(Romanski, 2012). In the context of multisensory integration,

the PFC has been highlighted as a domain-general structure

responsible for evaluating sensory discordance (Adam and

Noppeney, 2010; Calvert, 2001; Hein et al., 2007; Noppeney

et al., 2010) and has been implied in forming beliefs over infer-

ential states, based on expectations or prior experience, in face

of sensory uncertainty (Gau and Noppeney, 2016; Kayser and

Kayser, 2018; Noppeney et al., 2010).

Yet, the specific computations underlying frontal multisen-

sory representations and their role in driving behavior re-

mained elusive. Our results reconcile the previous literature

and suggest that the frontal cortex implements a flexible strat-

egy capitalizing on distinct computational solutions (fusion

versus segregation) when processing volatile multisensory

information. Thereby perception effectively amplifies the

behavioral significance either of segregated representations

established early on in a trial and maintained within sensory-

specific regions, or of fused representations formed within

temporal and parietal association regions later on. These re-

sults help to unify previous studies on general adaptive

behavior with those elucidating the function of frontal regions

in multisensory integration. In fact, prefrontal cortex seems

to support a domain-general mechanism for selecting among

multiple candidate strategies for solving a problem at hand,

when handling both multisensory and other information. As

such, the role of the PFC is unlikely about merging sensory

information alone, but about arbitrating between competing

strategies of how the most appropriate sensory representation

should be formed to guide behavior.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sixteen right-handed adults (8 females; aged 19 to 35 years, mean = 24.9, SD = 4.8) participated in this study. All reported normal

hearing and vision, were briefed on the nature and goal of this study, and received financial compensation for their participation. The

study was conducted in accordance with the Declaration of Helsinki and was approved by the local ethics committee (College of

Science and Engineering, University of Glasgow). Written informed consent was obtained from all participants prior to the study.

The head movement of one male participant during MEG acquisition was excessive (see Preprocessing of MEG Data) thus the

data were not included in the analysis. All results are reported for an N of 15.

METHOD DETAILS

Task design and stimuli
Participants categorized the temporal rate of stochastic sequences of brief visual and auditory pulses (flicker/flutter; see Roach et al.,

2006 for conceptually similar stimuli), presented either in unisensory or multisensory conditions. In each block participants were in-

structed to report either the auditory or visual rate as the task-relevant information. They were asked to respond as accurately and as

quickly as possible and to think of the visual and auditory pulses as originating either from independent sources or from a common

generative process. Such a design allows for an analysis of participants’ flexible strategies concerning when and how to use multi-

sensory cues for a judgement based on their task relevance. The pulse-trains (full duration = 550ms) consisted of sequential 16.7-ms

visual flickers (Gaussian annulus) and auditory flutters (amplitude-modulated white noise) with congruent or incongruent rates (each

being one of four possible levels: 9.1, 12.7, 16.4 or 20 Hz, i.e., 5, 7, 9 or 11 events presented in 550 ms). The first/last auditory flutter

was always onset-synchronized with the first/last visual flicker, while intermediate pulses were temporally jittered. The inter-event

intervals (IEIs; time from one event’s offset to the onset of a subsequent event) of a perfectly periodic event sequence were perturbed

using a zero-mean Gaussian jitter with a standard deviation equal to the 10% of the periodic-sequence IEI. The jittered visual events
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were further rounded to the nearest possible video flips and had a minimal IEI of 2 visual frames to avoid flicker fusion (event-onset-

asynchrony R 50 ms). The jitter was independent for the two modalities rendering the auditory and visual pulses temporally asyn-

chronous regardless of the overall congruency in auditory and visual rates.

The visual stimulus was a difference of two concentric Gaussians (standard deviation of 3� and 1.5� respectively; resulting in a

Gaussian annulus that made it possible to present a constant central fixation cross – white, diameter = 0.4�– throughout the entire

experiment). The auditory stimuli were noise bursts generated by modulating (square wave) the amplitude of a 550-ms white noise

with 3-ms onset-/offset cosine ramp. Wemanipulated the modulation depth – either 95% or 45% of the peak amplitude – resulting in

two levels of auditory reliability. These sound stimuli were then convolved with a head-related transfer function (elevation = 0�,
azimuth = 0�; PKU-IOA HRTF database, Qu et al., 2009) to promote perceived co-localization of the sound with the visual stimuli

projected to an external screen. The brightness of the visual flicker was jittered on a trial-by-trial basis to de-correlate the visual

contrast from sound intensity. Across trials, the auditory and visual rates, auditory reliability and the task-relevant modality were

manipulated factorially in a 4 (visual rates) by 4 (auditory rates) by 2 (auditory reliabilities) by 2 (task relevance) design, resulting in

64 multisensory conditions.

Experimental procedure and stimulus presentation
Each run of MEG data collection (5 min) contained all conditions (64 multisensory and 12 unisensory). Within each run the auditory

and visual tasks were separated into two task-specific blocks starting with on-screen instructions about the relevant modality for

upcoming trials. Unisensory and multisensory conditions were interleaved within each task-specific block. The auditory block con-

tained 32multisensory trials plus 8 auditory trials (4 rates3 2 reliabilities), whereas the visual block consisted of 32multisensory trials

plus 4 visual trials (4 rates). The order of auditory and visual blocks was counterbalanced across runs. Prior to the experiment par-

ticipants were passively exposed to 64 trials of unisensory stimuli (visual and auditory separately) with repeatedly increasing rates

(slowest to fastest, repeated 8 times) and were instructed to memorize the 4 rate categories for use in the following main task. No

feedback on correctness or speed was provided during the main experiment.

Stimulus presentation was controlled inMATLAB (Mathworks, Inc, Natick, USA) using the Psychophysics Toolbox (Brainard, 1997;

Pelli, 1997). Visual stimuli were projected through a DLP projector (Panasonic D7700) onto a non-translucent screen at 1280 3

720 pixels at 60 fps covering a field of view of 25� 3 19�. The viewing distance was 180 cm. Acoustic flutters (sampling rate =

48 kHz; depth = 16 bits; 80 dB SPL root-mean-square value, measured with a Br€uel & Kjær Type 2205 sound-level meter, A-weight-

ing) were presented through Etymotic ER-30 insert tubephones.We used inverse filteringmethods to eliminate the spectral distortion

of the sound stimuli induced by the frequency response of the tubephone system (Giordano et al., 2018).

Neuroimaging data acquisition
MEG data were acquired using a 248-magnetometers whole-head MEG system (MAGNES 3600 WH, 4-D Neuroimaging) at a sam-

pling rate of 1017.25 Hz with participants seated upright. The positions of five coils marking fiducial landmarks on the head of the

participants were acquired at the beginning and end of each run. Runs associated with excessive head movements, MEG noise

or containing reference-channel jumps were discarded. For each participant we selected the acceptable 22 noise- and artifact-

free runs with the smallest average head movement. Across these, the maximum change in head position was on average

3.9 mm (SD = 1.12 mm). To facilitate source analysis, we acquired for each participant the digitized head shape and the locations

of the five coils, as well as a whole-brain, high-resolution, structural T1-weighted MP-RAGE image (192 sagittal slices, 256 3 256

matrix size, 1 mm3 voxel size; Siemens 3T Trio scanner; 32-channel head coil).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of behavioral data - Crossmodal bias
We quantified the magnitude of the crossmodal bias as the absolute deviation of the reported rate from the task-relevant rate in each

trial (Figure 2F and 2G). To correct for a potential response tendency toward intermediate rates, we adjusted the task-relevant rate

using the mean reported rate derived from congruent trials using an established method (Rohe and Noppeney, 2015a). Specifically,

we replaced the task-relevant physical rate with the trial-averaged perceived rate in the respective congruent conditions. This adjust-

ment was carried out independently for each participant, and for each task and reliability level. We used a general linear model (GLM)

to predict the magnitude of the bias using the experimental factors and specific interactions of these (Figure 2G):

abs crossmodal biasð Þ � b0 + b1 T+ b2 AR+ b3 T3ARð Þ+ b4

abs Disparityð Þ+ b5 Disparity
2 (Equation 1)

where T = task relevance, AR = auditory reliability. GLM predictors were Z-scored to obtain comparable effect sizes. Significance

testing relied on a permutation procedure shuffling the condition labels and we corrected for multiple comparisons using maximum-

statistics (10,000 permutations; family-wise error FWE = 0.05 across GLMeffects). The results of this analysis were also validated in a

separate analysis that considered a more complex GLM with additional higher-order effects (Figure S1D), or a GLM with additional

cubic effect of disparity (resulting for all participants in an increase of BIC relative to the original GLM; average BIC increase = 2.9;

SEM = 0.31). We emphasize that the goal of this GLM was not to provide the best possible mathematical description for the bias
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curve, but, most importantly, to identify the behavior with a key prediction of causal inference: the deviation from a linear dependency

of bias on disparity as suggested by the fusion model.

Analysis of behavioral data – Modeling
We fitted three classes of candidate models as computational accounts for participants’ responses. First, we considered a unisen-

sory segregation model, which predicts responses for each condition as the unisensory rate perceived in the task-relevant modality.

Second, we fitted an established maximum-likelihood model for reliability-weighted sensory fusion (Ernst and B€ulthoff, 2004). This

predicts the response as a linear combination of the task-relevant and task-irrelevant sensory cues, each weighted in proportion to

their relative reliability (inverse variance). Importantly, this model reflects a mandatory integration of the two cues, regardless of their

discrepancy. Thismodel is known to account formultisensory behavior in conditions where sensory discrepancies are small and both

senses are required for a judgement (Ernst and B€ulthoff, 2004). Third, we considered a class of Bayesian models of causal inference

describing the arbitration between perceptual strategies in variable multisensory environments (Körding et al., 2007; Wozny et al.,

2010; Rohe and Noppeney, 2015a). These models incorporate a probabilistic belief about the causal relation between the sensory

inputs (Figure 1) and use this to arbitrate (in a statistical sense) between integrating and segregating the evidence from the different

senses.

For all models, the sensory estimate is about event rate, r. We modeled the respective unisensory estimates using Gaussian sen-

sory likelihoods: pðrajsaÞ = Nðsa; s2aÞ and pðrvjsvÞ = Nðsv; s2vÞ, with s denoting the physical rate of stimulus, and s2aðs2vÞ the variance of

the sensory likelihood distribution of unisensory auditory (visual) estimates, respectively. The sensory likelihood thus represents the

probability of experiencing sensation r as a result of stimulus s occurring in the environment. To capture response bias toward inter-

mediate rates, we included a Gaussian central prior, pðsÞ = N(mp;s
2
p), with variable mean mp and variance s2p.

Here, we briefly introduce the key aspects of each model (details can be found in: Ernst and B€ulthoff, 2004; Körding et al., 2007;

Wozny et al., 2010). First, we assumed that the reported rates are conditioned upon causal structure: either two independent causes

(c = 2, Figure 1 left, Equation 2) or a single common cause (c = 1, Figure 1 middle, Equation 3). Then the posterior probability of audi-

tory or visual cue given a specific causal structure c and sensory observation r, is given by Bayes’ rule:

pðsajra; c= 2Þ=pðrajsaÞpðsÞ
pðraÞ
pðsvjrv; c= 2Þ=pðrvjsvÞpðsÞ
pðrvÞ (Equation 2)
pðs j rv; ra; c= 1Þ=pðrajsÞpðrvjsÞpðsÞ
pðrv; raÞ (Equation 3)

Under the assumption of Gaussian distributions, the maximum-a-posteriori estimates are given by Equation 4 for segregation and

by Equation 5 for fusion:

bSa; c= 2 =
ra
�
s2
a +mp

�
s2
p

1
�
s2
a + 1

�
s2
p

; bSv; c= 2 =
rv
�
s2
v +mp

�
s2
p

1
�
s2
v + 1

�
s2
p

(Equation 4)
bSa; c= 1 = bSv; c= 1 =
ra
�
s2
a + rv

�
s2
v +mp

.
s2
p

1
�
s2
a + 1

�
s2
v + 1

.
s2
p

(Equation 5)

For the causal inference models, we modeled an ideal Bayesian observer who uses an inferred belief about the multisensory cau-

sality (c = 1 for common cause, c = 2 for independent causes) to estimate the rate. This belief (Equations 8 and 9) is probabilistically

determined by combining the sensory likelihoods with an integration tendency pc, that is, an a priori belief in a common cause across

the full experimental settings. Given the Gaussian assumption, the sensory likelihoods p rv; rajcð Þ of the visual and auditory estimates

(rv and ra) under each causality assumption are:

pðrv; ra j c= 1Þ= 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
vs

2
a + s2

vs
2
p + s2

as
2
p

q e
�1
2

�
ðrv�raÞ2s2p +ðrv�mpÞ2s2a +ðra�mpÞ2s2v

s2vs
2
a + s2vs

2
p + s2as

2
p

�
(Equation 6)
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pðrv; ra j c= 2Þ= 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
s2
v + s2

p

��
s2
a + s2

p

�r e
�1
2

�ðrv�mpÞ2
ðs2v + s2pÞ +

ðra�mpÞ2
ðs2a + s2pÞ

�
(Equation 7)

Given these sensory likelihoods and integration tendency, the posterior belief about the causal structure can be inferred using

Bayes’ rule:

pðc= 1 j rv; raÞ= pðrv; ra j c= 1Þpc

pðrv; ra j c= 1Þpc +pðrv; ra j c= 2Þð1� pcÞ (Equation 8)
pðc= 2 j rv; raÞ= 1� pðc= 1 j rv; raÞ (Equation 9)

Decision strategies of causal inference. We considered three decision strategies when modeling how the inferred causal struc-

ture (Equations 8 and 9) is used to obtain a rate estimate: Model averaging (MA; Körding et al., 2007), probability matching (PM) and

model selection (MS; Wozny et al., 2010). MA (Equation 10) minimizes the mean squared error of the final estimate by combining the

estimates derived from segregation and fusion (in Equations 4 and 5), each weighted by the inferred posterior probability over the

respective causal structure:

bSa =pðc= 1 j rv; raÞ bSa; c= 1 +pðc= 2 j rv; raÞ bSa; c=2
bSv =p c= 1jrv; rað Þ bSv; c= 1 +p c= 2jrv; rað Þ bSv; c= 2 (Equation 10)

With PM as decision strategy (Equation 11) an observer aims to arbitrate between the fusion and segregation using a probabilistic

rule, with the relative probability of each outcome matching the inferred probability of each causal scenario. This strategy was

modeled using a stochastic selection criterion, g, which was sampled uniformly in [0, 1] and independently on each trial:

bSa = bSa; c= 1 if p c= 1jrv; rað Þ>g; bSa = bSa; c= 2 if p c= 1jrv; rað Þ%g
bSv = bSv; c= 1 if pðc= 1 j rv; raÞ>g; bSv = bSv; c= 2 if pðc= 1 j rv; raÞ%g (Equation 11)

With MS as decision strategy an observer selects fusion (segregation) as long as the inferred posterior probability of the respective

causal structure ‘‘c = 1’’ (‘‘c = 2’’) exceeds 0.5. Practically, this corresponds to fixing g in Equation 11 at 0.5.

We also considered a model in which the observer consistently holds a neutral belief about a common cause (pc = 0.5) thus only

uses sensory likelihood to determine the causal structure. We termed this a ‘‘likelihood’’ model because it assumes that the posterior

over a causal structure can be fully determined by the ratio of sensory likelihood itself (Equation 12). For this model the posterior prob-

ability of a common cause is given by:

p c= 1jrv; rað Þ= 1

1+p rv; rajc= 2ð Þ=p rv; rajc= 1ð Þ (Equation 12)

Analysis of behavioral data – Model fitting
To estimate the best-fitting model parameters, for each participant we implemented an optimization search that maximized the log-

likelihood of eachmodel given the participant’s data. Suppose the counts of the four choices in a given condition areNi, with i = {1, 2,

3, 4}. Then the log-likelihood of a model that predicts the response probabilities pi associated with each of the 4 choices is given by:

LLðmodel j fNigÞ= ln C+
X4

i = 1

Ni ln pi (Equation 13)

where C denotes the multinomial coefficient, i.e., C = ðP4
i = 1

NiÞ!=ð
Y4
i = 1

Ni!Þ. Maximizing Equation 13 is equivalent to maximizing

P4
i = 1

Ni ln pi because ln C is a constant. However, ln C must be estimated for calculating the generalized coefficient of determination

(see Model Comparison below). In practice, C can be written as a product of a series of binomial coefficients:

C=

�
N1

N1

	�
N1 +N2

N2

	�
N1 +N2 +N3

N3

	�
N1 +N2 +N3 +N4

N4

	
(Equation 14)
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For large Ni, the logarithm of the factorial function (Equation 14) can be approximated using Stirling’s formula (MacKay, 2003):

ln
a!

b!ða� bÞ!zb ln
a

b
+ ða� bÞln a

a� b
(Equation 15)

Parameter estimation relied on the Bayesian Adaptive Direct Search (BADS; Acerbi andMa, 2017) maximizing the sum of log-likeli-

hoods across all 64 multisensory conditions. To avoid local optima, for each model we generated a grid of 500 random parameter

guesses as starting values. Monte Carlo sampling (N = 20,000) was used to generate the model-predicted distributions of rate es-

timates given by Equations 4, 5, 6, 7, 8, 9, 10, and 11. We obtained discrete categorization probabilities by binning the continuous

distributions to the closest stimulus rate among the 4 levels used in the experiment (similar to Körding et al., 2007; Rohe and Nop-

peney, 2015b).

Analysis of Behavioral Data – Model Comparison
We used Bayesian random-effects model comparison to determine the model that best explains the data at the group level using

both Schwarz’s Bayesian Information Criterion (BIC) and the corrected Akaike Information Criterion (AICc) (Rigoux et al., 2014).

BIC = �2LL + k 3 ln(n), AICc = �2LL + 2k + 2k(k+1)/(n-k-1), corrected for sample size (Cavanaugh, 1997); where LL denotes the

log-likelihood, k the number of free parameters, n the total number of data points, and ln the natural logarithm. Log model evidence

was obtained for each participant and model by multiplying the BIC or AICc by �½. We then calculated each model’s posterior fre-

quency and protected exceedance probability (i.e., the probability corrected for chance level that a model is more likely than any

others in describing data) using the variational Bayesian analysis (VBA) toolbox (Daunizeau et al., 2014; summarized in Table S1).

We also report the models’ goodness-of-fit using the generalized coefficient of determination R2 (Nagelkerke, 1991):

R2 =
n
1� e

ð� 2
n

n
LL

�bb�� LLð0Þ
o�o.

R2
max (Equation 16)

where LLðbbÞ and LLð0Þ denote the log-likelihood of the fitted and a ‘null’ model respectively. The null model describes a chance-level

observer with response probability = 0.25 over 4 choices.R2
max = 1� eð� 2

n fLLð0Þg


is a scaling factor proposed byNagelkerke (1991).

Analysis of behavioral data – Sensory noise function
We considered that the sensory noise (s2) in the above sensory likelihood functions might depend on the rate, r, in a power-law

fashion (Nieder and Miller, 2003). To determine the precise nature of this dependency, we compared different functions describing

the rate-dependent noise using the data from unisensory trials. We started from the following general form:

s2
r =g+p$rk (Equation 17)

with g denoting a baseline (i.e., rate independent) noise, r being the rate, p and k, a scaling factor and a power coefficient, respec-

tively. For practical purposes we re-parameterized the power function as follows [here r1 (s1) and r4 (s4) denote the lowest and highest

rates (SD of noise), respectively]:

s2
r = s2

1 + rk � rk1
� 


s2
4 � s2

1

� 
�
rk4 � rk1
� 


(Equation 18)

and specifically considered four candidate models describing how parameters change with modality and reliability:

(Model 1): parameters being both modality-specific and reliability-specific;

(Model 2): parameters being modality-specific but reliability-independent;

(Model 3): parameters being both modality-independent and reliability-independent;

(Model 4): constant noise across rates, but being both modality-specific and reliability-specific.

We compared these models in capturing the rate dependency of noise using cross-validation on unisensory trials (i.e., partitioning

the 22 runs in 5 folds with alternating runs across folds). Model 2 outperformed the others, as demonstrated by an exceedance prob-

ability Pexc = 0.98 (protected Pexc = 0.53) and amean posterior model probability = 0.47 (SD = 0.056; see Figure S6 for model details).

Preprocessing of MEG Data
All analyseswere carried out inMATLAB using SPM12 (Wellcome Trust, London), Fieldtrip (Oostenveld et al., 2011) and custom code.

Signal preprocessing was initially carried out on unsegmented MEG data from each run. Infrequent SQUID jumps (observed in 2.3%

of the channels, on average) were repaired using piecewise cubic polynomial interpolation. For each participant, we then removed

those channels that consistently deviated from the median spectrum (shared variance < 25%) on at least 25% of the runs (number of

removed channels = 8.4 on average; SD = 2.2). Environmental magnetic noise was removed using regression based on principal

components of reference channels. Both the MEG and reference data were then filtered using a forward-reverse 70 Hz FIR low-

pass (�40 dB at 72.5 Hz), a 0.2 Hz elliptic high-pass (�40 dB at 0.1 Hz) and a 50 Hz FIR notch filter (�40 dB at 50 ± 1Hz), and

were subsequently re-sampled to 150 Hz. Residual magnetic noise was once more removed using the same regression approach.
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ECG and EOG artifacts were removed using independent component analysis (‘‘runica’’ in Fieldtrip, 30 components) and were iden-

tified based on their time course and topographies (Hipp and Siegel, 2013).

MEG data from each run were then segmented into trials. Given the condition-wise differences in reaction times (Figure S1), we

aligned the MEG trial-wise segmentations not only to stimulus onset (stimulus-locked window = �0.1 to 0.7 s from stimulus onset)

but also to trial-by-trial response onset (response-locked window = �0.7 to 0.1 s from response onset). Segmented MEG data were

then corrected on a block-by-block basis to avoid motor contamination of the response on the brain activities specific to each con-

dition, which are our primary interests in subsequent analyses. To this purpose, and independently for each run, the motor-related

signals were approximated by averaging MEG data across trials of different experimental conditions but having the same button

press (N of conditions = 76, ensuring the same finger response could occur in many distinct conditions) and were finally subtracted

from the single-trial MEG data.

Reconstruction of MEG sources
For MEG source analysis, we prepared for each participant a native-space grid of 3.5-mm resolution by re-sampling a group-level

anatomical template in native space. The group anatomical template was based on Diffeomorphic Anatomical Registration Through

Exponentiated Lie algebra (DARTEL, Ashburner, 2007). A group-level mask was then created by considering non-cerebellum tem-

plate voxels associated with a gray-matter probability > 0.1, and was back-deformed to the native space of each individual. The

native space grid for each individual finally considered 6-connected voxels associated with a participant-specific gray-matter prob-

ability > 0.25. Depth-normalized lead fields for each participant were then computed based on a single-shell conductormodel and the

source-projection filters were derived for each block using a linearly-constrained-minimum-variance (LCMV) beamformer (regular-

isation = 5%). Data were projected onto the dipole orientation of maximum variance across runs.

Representational similarity analysis
Representational similarity analysis (RSA) quantifies the statistical association between the pairwise dissimilarity of multivariate brain

activity in different conditions (MEG representational dissimilarity matrix RDM) and model RDMs that quantify hypotheses about the

nature of the neural representations (here the computational models; Kriegeskorte et al., 2008;Walther et al., 2016). We implemented

a whole-brain MEG RSA (Giordano et al., 2018) to assess the local encoding of four different types of rate estimates in the MEG ac-

tivity as predicted by the candidate models fit to behavioral data. The MEG RDMs were computed in native source space of each

participant within a spatiotemporal searchlight (10-mm spatial radius, 80-ms temporal extent, and 40-ms temporal overlap between

consecutive searchlights). Importantly, we retained the temporal structure within each searchlight, rather than averaging the MEG

signal within it. Searchlight-specific RDMs quantified the cross-validated Mahalanobis distances between condition-specific spatio-

temporal response patterns (Walther et al., 2016). More specifically, we: 1. partitioned the 22 runs into 5 folds (alternating consecutive

runs across folds); 2.whitened within-searchlight data for each fold independently using the residuals of a GLM predicting condition-

specific response patterns; and 3. computed the cross-validated Euclidean distance of condition-specific whitened data based on

the covariance between pairs of cross-validation folds (average of covariance between the 10 possible pairs of the 5 folds). To

construct model RDMs, we first obtained the model-predicted rate estimates for each condition and participant. For each condition,

the model-predicted rate was obtained by averaging 20,000 posterior rate estimates (Equations 4, 5, and 10; see above) derived us-

ing the best-fitting model parameters. The model RDMs were then constructed by taking the pairwise absolute difference between

the model-predicted rate estimates for each pair of the 64 conditions (equivalent to the Euclidean distance between condition-

specific rate estimates).

We used the Spearman rank correlation betweenMEG andmodel RDM to quantify theMEG representation of themodel-predicted

rate estimates. The RSA correlation maps were computed in native space, Fisher Z transformed, were then transformed to the

DARTEL group space (Gaussian smoothing FWHM = 8 mm), and finally assembled in T statistics for group-level inference. Impor-

tantly, the rate predictions from the different models and the associated model RDMs were not independent of each other. As

such, a significant RSA correlation with a given model RDM is itself not a strong proof of selective representation because it might

be the by-product of a correlated model. To address the key question of selective model representation, we used variance partition-

ing (see e.g., Hebart et al., 2018; Seibold andMcPhee, 1979) to assess the neural encoding of the unique variance (‘‘selective encod-

ing,’’ hereafter) of eachmodel after partialling out all other model RDMs using rank regression (semi-partial correlation). For fusion we

partialled out the CI RDM but not the SV and SA RDMs, because fusion by nature is a linear combination of SA and SV, while CI also

builds on either SA or SV depending on the task, and hence partialling out all other models would be overly stringent in comparison to

the selective encoding tests for the other models (group averaged percent variance retained in the CI, fusion, SA and SV RDMs after

partialling out all other model RDMs = 73.7, 80.9%, 75.7 and 80.0%, respectively; SEM % 4%). Note that a focus on semi-partial

correlations for establishing selective model encoding does not automatically lead to the observation of segregated networks for

the encoding of different models, as multiple predictors can exhibit significant partial correlations (see e.g., spatiotemporal overlap

of selective encoding of SA and SV models in temporal cortex, and overlap of SA and CI model encoding in cingulate cortex in

Figure 3A).

Significance testing relied on a permutation-based random-effects (RFX) framework (shuffling condition labels; 10,000 permuta-

tions for each test), in conjunction with a spatiotemporal cluster-mass enhancement of the group-level statistics (parametric cluster-

forming threshold of T(14) = 1.76 for 1-sided inference, Maris and Oostenveld, 2007). Correction for multiple comparisons relied, for
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each model RDM independently, on the maximum-statistics across the entire analysis space (see below; FWE = 0.05; 1-sided infer-

ence for both correlations and semi-partial correlations). Importantly, while correlations were tested across all RSA time windows

and gray-matter DARTEL-space voxels, semi-partial correlations were tested only within a mask of significant correlations. In other

words, we adopted a two-step approach that initially assessed the non-selective encoding of a particular model, and subsequently

tested for selective encoding (Giordano et al., 2018), which mitigated false-positives in a strict way. This RSA was carried out twice,

once using the data aligned to stimulus onset, and once aligned to the behavioral response onset. Region-of-interests (ROIs) were

identified as the DARTEL coordinates of local MEGmodel-encoding peaks on the spatiotemporal T(s.p.r) maps and are reported us-

ing MNI coordinates in Table 1.

We carried out control analyses to rule out alternative explanations for the coexisting representations of fused and inference rep-

resentations. The significant RSA effects reported in themain text were contributed by themajority of the participants (Figure S2), and

across these the two effects were uncorrelated (FWE-corrected p > 0.73 for stimulus-locked ROIs, and p > 0.66 for response-locked

ROIs; left-sided maximum-statistics permutation tests), which would not be the case if some participants’ MEG activity was ex-

plained by fusion and that of others by causal inference. Together with the fact that none of the participants’ behavior was better

described by fusion than CI (Table S1), this suggests that the coexistence of distinct neural representations is unlikely just a by-prod-

uct of pooling neural data from different participants whose behaviors were best fit by either model. We also performed a control

analysis to rule out the possibility that the ROIs with RSA fusion effects simply reflect a fixed linear integration without weighting

each modality by its relative reliability. We compared reliability-weighted fusion against a simpler model of fusion that ignores the

trial-by-trial variations in auditory reliability. The average Pexc of the full reliability-weighted fusion model was as high as 0.875

(SEM = 0.048) across the fusion ROIs.

A further analysis qualified the relative temporal order of the cerebral encoding of the candidate models. We focused on the set of

ROIs revealed by the RSA (Table 1), each associated with the selective encoding of a particular model. For each ROI, we imple-

mented a finer-grained RSA (temporal overlap between consecutive searchlights = 6.67 ms, i.e., 1 sample shift for the 150 Hz

preprocessedMEG signal) and derived the full time course of the T(s.p.r) statistics measuring the group-level selective model encod-

ing, and then extracted the latencies of the peak T(s.p.r) quantifying themost robust selective encoding of eachmodel. We then used

a bootstrap approach (and reporting 95%bias-corrected and accelerated [BCa] bootstrap confidence intervals; Efron and Tibshirani,

1994) to contrast the latency of the peak T for each pair of ROIs encoding the respective models (fusion ROIs versus CI ROIs; Fig-

ure S3C–S3F).

Analysis of the neural representations in regions of interest (ROIs)
We implemented a GLM to provide an in-depth understanding of the computational properties of the representations in the ROIs

unveiled by the RSA. We focused on the variance of the brain RDMs reflecting the representation of the various candidate compu-

tational models. These computation-diagnostic brain RDMs were derived for each ROI (the closest grid point to the ROI’s MNI co-

ordinate deformed to native space) within a cross-validated rank regression framework that prevented over-fitting while not favoring

a priori any particular computational model:

MEG RDM= b0 + b1ðCI RDMÞ+ b2ðFU RDMÞ+ b3ðSA RDMÞ+ b4ðSV RDMÞ (Equation 19)

where themodel RDMs: causal inference =CI, fusion = FU, segregation auditory = SA, segregation visual = SV.We used a leave-one-

participant-out cross-validation scheme for estimating the computation-diagnostic RDMs specific to each individual. That is, we

derived the betas for predicting in one single GLM the MEG RDMs of all but one participant (independent ranking of data from

each participant), and then used these betas to estimate the computation-diagnostic MEG RDM of the left-out participant (using

this participant’s own model RDMs).

An initial analysis aimed to characterize the dependency of ameasure of crossmodal bias derived from the computation-diagnostic

MEG RDMs on two key features of flexible multisensory integration: 1. the interaction of task relevance with sensory reliability, and 2.

the quadratic effect of disparity. The modeling approach mirrored the analysis of behavioral data (Figure 2G) to predict bias within a

rank GLM using, as regressors, task, auditory reliability, the task 3 reliability interaction, disparity and the squared disparity (Equa-

tion 1). Here, the cerebral measures of bias and disparity were extracted from the MEG RDMs. The bias was derived as the repre-

sentational distance (i.e., relevant MEG RDM cells) between each of the 64 conditions on one hand (e.g., a condition with auditory

rate = 9.1 Hz and visual rate = 16.4 Hz in auditory task), and the congruent condition with the same task-relevant rate on the other

hand (in this example: 9.1 Hz for both auditory and visual rates; still in auditory task). The disparity for each of the 64 conditions was

derived as the representational distance between the two respective congruent conditions with the same task-relevant versus task-

irrelevant rate (in this example: the two congruent conditions with rates of 9.1 and 16.4 Hz respectively; still in auditory task). Permu-

tation-based RFX inference was used for significance testing with correction for multiple comparisons separately for stimulus- and

response-locked ROIs (FWE = 0.05; Figures 4A and S4).

We also visualized the representational geometries in each ROI. We used inter-individual difference multidimensional scaling

(INDSCAL; de Leeuw and Mair, 2009; Ashby et al., 1994; Figures 4C, S5A, and S5B) to avoid a known distortion of multidimen-

sional-scaling solutions caused by averaging distances across individuals (Ashby et al., 1994). Here we used INDSCAL models
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with different dimensionalities to visualize the influence of different experimental factors upon the neural representations: two-dimen-

sional models for the influence of auditory and visual rates and of their discrepancy, and three-dimensional models for the influence of

task and sensory reliability.

Analysis of cerebral representation of categorization behavior
To investigate in which ROIs the MEG activity directly drives participants’ categorization behavior, rather than only reflecting the

representation of a specific model, we conducted the following analysis. We implemented an RSA measuring the Spearman rank

correlation between participant-specific response-locked MEG RDMs and behavioral RDMs, with the latter comprising pairwise ab-

solute distance between the trial-averaged behavioral responses of different conditions. RFX significance testing followed the same

permutation approach as for the model-based RSA to ascertain whether the group-average correlation in each ROI was significantly

larger than zero (FWE = 0.05 across response-locked ROIs). We first assessed this neuro-behavioral correlation for the entire RDMs

pertaining to all 64 conditions. To identify the neural underpinning of the disparity-dependent adaptive behavior, we also quantified

the dependency of this neuro-behavioral correlation on disparity. We focused on the ROIs characterized by a significant overall

behavioral relevance in the first step, and quantified the RSA effect of behavior independently for the 24 conditions with small-

disparity (absolute disparity = 3.6 Hz; Figure 6) and another 24 conditions with large-disparity (absolute disparity > 3.6 Hz). We

then tested for a significant modulatory influence of the disparity on the RSA effect of behavior by permuting independently the

row and columns of the small and large disparity RDMs, and contrasting their Fisher Z transformed correlation with the respective

portions of the behavioral RDM (large minus small; two-sided RFX inference; FWE = 0.05).

DATA AND SOFTWARE AVAILABILITY

Behavioral data and MEG RDMs for each participant in each ROI (Table 1) is available at the Github address specified in the Key

Resources Table. Further information and requests for sources and reagents should be directed to and will be fulfilled by the

Lead Contact, Yinan Cao (yinan.cao@psy.ox.ac.uk), Department of Experimental Psychology, University of Oxford.
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