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Abstract	

We	begin	by	reviewing	the	statistical	framework	of	information	theory	as	
applicable	to	neuroimaging	data	analysis.	A	major	factor	hindering	wider	adoption	
of	this	framework	in	neuroimaging	is	the	difficulty	of	estimating	information	
theoretic	quantities	in	practice.	We	present	a	novel	estimation	technique	that	
combines	the	statistical	theory	of	copulas	with	the	closed	form	solution	for	the	
entropy	of	Gaussian	variables.	This	results	in	a	general,	computationally	efficient,	
flexible,	and	robust	multivariate	statistical	framework	that	provides	effect	sizes	
on	a	common	meaningful	scale,	allows	for	unified	treatment	of	discrete,	
continuous,	uni-	and	multi-dimensional	variables,	and	enables	direct	comparisons	
of	representations	from	behavioral	and	brain	responses	across	any	recording	
modality.	We	validate	the	use	of	this	estimate	as	a	statistical	test	within	a	
neuroimaging	context,	considering	both	discrete	stimulus	classes	and	continuous	
stimulus	features.	We	also	present	examples	of	analyses	facilitated	by	these	
developments,	including	application	of	multivariate	analyses	to	MEG	planar	
magnetic	field	gradients,	and	pairwise	temporal	interactions	in	evoked	EEG	
responses.	We	show	the	benefit	of	considering	the	instantaneous	temporal	
derivative	together	with	the	raw	values	of	M/EEG	signals	as	a	multivariate	
response,	how	we	can	separately	quantify	modulations	of	amplitude	and	
direction	for	vector	quantities,	and	how	we	can	measure	the	emergence	of	novel	
information	over	time	in	evoked	responses.	Open-source	Matlab	and	Python	code	
implementing	the	new	methods	accompanies	this	article.	
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1. Introduction	

Mutual	 Information	 (MI)	measures	 the	 statistical	 dependence	 between	 two	
random	variables	(Cover	and	Thomas,	1991;	Shannon,	1948).	It	can	be	viewed	as	a	
statistical	 test	 against	 a	 null	 hypothesis	 that	 two	 variables	 are	 statistically	
independent,	 but	 in	 addition	 its	 effect	 size	 (measured	 in	 bits)	 has	 a	 number	 of	
useful	properties	and	interpretations	(Kinney	and	Atwal,	2014).		

There	 is	 a	 long	 history	 of	 applications	 of	MI	 for	 the	 study	 of	 neural	 activity	
(Borst	and	Theunissen,	1999;	Eckhorn	and	Pöpel,	1974;	Fairhall	et	al.,	2012;	Nelken	
and	 Chechik,	 2007;	 Rolls	 and	 Treves,	 2011;	 Victor,	 2006).	 MI	 has	 been	 used	 to	
compare	 different	 neural	 response	 codes	 (Ince	 et	 al.,	 2013;	 Kayser	 et	 al.,	 2009;	
Reich	et	al.,	2001),	characterization	of	different	neurons	(Sharpee,	2014)	as	well	as	
quantification	 of	 the	 effect	 of	 correlations	 between	 neurons	 (Ince	 et	 al.,	 2009,	
2010;	Moreno-Bote	et	al.,	2014)	and	of	the	importance	of	spike	timing	(Kayser	et	
al.,	2010;	Nemenman	et	al.,	2008;	Panzeri	et	al.,	2001).	Recent	studies	have	begun	
to	 explore	 its	 application	 to	 neuroimaging	 (Afshin-Pour	 et	 al.,	 2011;	 Caballero-
Gaudes	 et	 al.,	 2013;	 Gross	 et	 al.,	 2013;	 Guggenmos	 et	 al.,	 2015;	 Ostwald	 and	
Bagshaw,	 2011;	 Panzeri	 et	 al.,	 2008;	 Salvador	 et	 al.,	 2007;	 Saproo	 and	 Serences,	
2010;	Schyns	et	al.,	2011;	Serences	et	al.,	2009).	

Despite	its	useful	properties,	a	possible	reason	for	why	MI	has	not	been	more	
widely	adopted,	particularly	within	the	neuroimaging	community,	is	the	difficulty	
of	accurately	estimating	MI	from	limited	quantities	of	experimental	data	(Steuer	
et	 al.,	 2002).	 The	 most	 common	 approach	 involves	 quantizing	 the	 data	 into	 a	
number	of	bins,	and	estimating	MI	over	 the	 resulting	discrete	spaces.	However,	
this	 method	 is	 sensitive	 to	 the	 problem	 of	 limited	 sampling	 bias,	 which	 is	
particularly	 acute	 when	 considering	 multi-dimensional	 responses.	 Several	
continuous	methods	are	available	(outlined	briefly	 in	Section	2),	but	while	these	
measures	 are	 often	 less	 sensitive	 to	 sampling	 bias	 effects,	 they	 can	 be	
computationally	expensive	and	often	require	the	estimation	(or	ad-hoc	setting)	of	
additional	parameters.		

Here	we	present	a	novel	approach	to	estimating	MI	with	continuous	variables.	
Our	 method	 is	 rank-based,	 robust	 and	 makes	 no	 assumptions	 on	 the	 marginal	
distributions	 of	 each	 variable.	 It	 does	make	 an	 assumption	 on	 the	 form	 of	 the	
relationship	 between	 the	 variables,	which	 results	 in	 the	 estimate	 being	 a	 lower	
bound	 to	 the	 true	 MI.	 It	 is	 computationally	 efficient	 and	 statistically	 powerful	
when	applied	within	a	permutation-based	null-hypothesis	testing	framework.	We	
highlight	 the	 benefits	 resulting	 from	 the	 ability	 of	 the	 estimator	 to	 extend	 to	
multivariate	 response	 spaces,	 which	 are	 often	 intractable	 with	 other	 methods.	
This	 improved	multivariate	performance	 allows	 estimation	of	 quantities	 such	 as	
Conditional	 Mutual	 Information	 (CMI)	 (Ince	 et	 al.,	 2012),	 Directed	 Information	
(also	called	transfer	entropy)	(Ince	et	al.,	2015;	Massey,	1990;	Schreiber,	2000)	as	
well	as	measures	quantifying	pairwise	interactions	between	variables	(Chicharro,	
2014;	 Panzeri	 et	 al.,	 2008).	We	 believe	 these	 higher-order	 information-theoretic	
quantities	 have	 the	 potential	 to	 provide	 transformative	 new	 interpretations	 of	
neuroimaging	data,	by	providing	a	unified	 framework	 for	analyses	based	on	 the	
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information	 content	 of	 neural	 signals	 (Kriegeskorte	 and	 Bandettini,	 2007;	
Naselaris	et	al.,	2011;	Schyns	et	al.,	2009).	The	methods	we	present	enable	study	of	
the	 representation,	 processing,	 and	 communication	 in	 the	 brain	 of	 multiple	
features	of	 the	external	world	 (Ince	et	al.,	 2015).	 Furthermore,	 they	also	enable	
the	 study	 of	 the	 relationships	 between	 representation	 in	 different	 signals	
(Kriegeskorte	 et	 al.,	 2008).	 Overall,	 this	 new	 estimator	 provides	 the	 basis	 for	 a	
useful	 and	 flexible	 multivariate	 statistical	 framework	 for	 the	 analysis	 of	
neuroimaging	data.		

In	 this	 paper,	 we	 first	 introduce	 the	 concepts	 of	 entropy	 and	 MI	 within	 a	
neuroimaging	context,	and	briefly	review	current	MI	estimation	methods.	We	also	
describe	higher-order	information	theoretic	quantities	and	possible	neuroimaging	
applications	(Section	2).	We	then	present	our	novel	MI	estimator	(Section	3)	and	
demonstrate	 its	 statistical	 performance	 when	 combined	 with	 a	 permutation-
based	 null-hypothesis	 testing	 framework,	 with	 simulations	 and	 examples	 on	
several	data	sets	(Section	4).	

2. Review	of	information	theory	for	neuroimaging	

In	 this	 section	 we	 review	 information	 theoretic	 methods	 from	 a	
neuroimaging	 perspective.	 Readers	 familiar	 with	 information	 theory	 can	 skip	
this	section	and	proceed	to	Section	3	where	we	present	our	novel	MI	estimator.	

2.1. Entropy	

Entropy	is	the	foundational	quantity	of	 information	theory,	and	is	a	measure	
of	the	uncertainty,	or	variability,	of	a	random	variable.	For	any	particular	value	of	a	
random	variable,	a	low	probability	means	that	outcome	is	less	likely	to	occur,	and	
so	an	observer	would	be	more	surprised	to	see	it.	A	high	probability	value	would	
be	less	surprising.	This	notion	can	be	formulated	mathematically:	the	surprise	for	
value	 	drawn	from	a	distribution	 	is	defined	as	 .	Entropy	 is	then	
defined	as	the	expected	(average)	surprise	over	the	distribution	(Figure	1).	 If	an	
observer	draws	samples	 from	a	distribution,	a	 lower	entropy	distribution	means	
the	 observer	 will	 be	 less	 surprised	 (or	 uncertain)	 about	 the	 outcome	 of	 any	
particular	sample	–	i.e.	they	would	be	able	to	make	a	more	accurate	guess.	Spread	
out	distributions	 (with	high	variability)	will	 have	high	entropy	 since	all	 potential	
outcomes	have	similar	probabilities	and	so	the	outcome	of	any	particular	draw	is	
very	 uncertain.	 On	 the	 other	 hand,	 concentrated	 distributions	 (with	 low	
variability)	 will	 have	 lower	 entropy,	 since	 some	 outcomes	 will	 have	 high	
probability,	 allowing	 a	 reasonable	guess	 to	be	made	about	 the	outcome	of	 any	
particular	 draw.	 Figure	 1	 shows	 some	 examples	 of	 entropy	 of	 some	 continuous	
and	discrete	variables.	

x P(x) − log2 P(x)
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Figure	 1	Entropy	 values	 for	 some	 example	 distributions.	A.	 Variance	 (σ2)	 and	entropy	 (H)	 for	
three	example	continuous	1D	distributions.	B.	Entropy	(H)	for	three	example	discrete	distributions.		

	

When	the	logarithm	used	in	the	definition	of	surprise	is	base-2	(Figure	1),	the	
resulting	entropy	value	has	units	of	bits.	In	this	case	the	entropy	value	has	a	useful	
interpretation.	If	an	ideal	observer	with	knowledge	of	the	true	distribution	has	to	
guess	the	value	of	a	particular	sample	by	asking	a	series	of	yes/no	questions,	the	
entropy	 in	 bits	 gives	 the	 average	 number	 of	 questions	 required.	 Equivalently,	 a	
reduction	of	entropy	by	1	bit	corresponds	to	halving	of	the	uncertainty.		

If	 the	 random	 variable	 considered	 is	 discrete,	 the	 distribution	with	maximal	
possible	 entropy	 is	 the	 uniform	 distribution	 (Figure	 1B).	 For	 continuous	 valued	
variables,	 the	 term	differential	 entropy,	 is	often	used	–	but	here	 for	conciseness	
we	use	entropy	for	both	types	of	variable.	In	the	continuous	case,	entropy	can	be	
thought	of	 as	 a	 generalized	 form	of	 variance	 although	unlike	 variance,	which	 is	
appropriate	 to	 use	 as	 a	 measure	 of	 spread	 or	 dispersion	 only	 for	 unimodal	
distributions,	entropy	can	give	a	meaningful	quantification	of	spread	for	any	form	
of	 distribution.	 This	 analogy	with	 variance	 can	 be	 useful	 to	 keep	 in	mind	when	
considering	 other	 information	 theoretic	 quantities	 (Garner	 and	McGill,	 1956).	 In	
the	 case	 of	 variables	 taking	 continuous	 values	 (i.e.	 with	 infinite	 support),	 for	 a	
specified	mean	and	variance	the	distribution	with	maximal	entropy	is	a	Gaussian.	
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Further,	for	Gaussian	distributions	the	entropy	is	proportional	to	the	logarithm	of	
the	variance.	

Entropy	 alone	 can	 form	 a	 useful	 measure	 of	 the	 complexity	 of	 a	 signal	
(Abásolo	et	al.,	2006;	Inouye	et	al.,	1991;	Overath	et	al.,	2007).	However	here	we	
are	 interested	 primarily	 its	 relation	 to	mutual	 information,	which	 quantifies	 the	
relationship	 between	 two	 variables	 (for	 example	 an	 external	 stimulus	 and	 a	
recorded	signal)	in	terms	of	differences	in	entropies.	

2.2. Mutual	information	

Mutual	 information	(MI)	 is	a	measure	of	the	statistical	dependence	between	
two	random	variables	(Cover	and	Thomas,	1991;	Latham	and	Roudi,	2009).	It	is	the	
most	general	such	measure	because	MI	makes	no	assumptions	on	the	distribution	
of	the	variables,	or	the	nature	of	the	relationship	between	them	and	is	sensitive	
to	non-linear	and	non-monotonic	effects	(Figure	2).	

	

	

Figure	2	Examples	of	correlation	vs	mutual	information.	Each	panel	illustrates	a	scatter	plot	of	
samples	 drawn	 from	 a	 particular	 bi-variate	 distribution.	 For	 each	 example,	 the	 correlation	
between	the	two	variables	is	shown	in	orange	(left)	and	the	MI	is	shown	in	purple	(right;	discrete	
method,	16	bins,	100,000	samples,	no	bias	correction).	The	top	row	shows	linear	relationships,	for	
which	MI	and	correlation	both	detect	a	relationship	(although	on	different	scales,	and	note	that	as	
MI	is	always	positive	it	does	not	reveal	the	direction	of	the	relationship).	The	bottom	row	shows	a	
series	of	distributions	for	which	the	correlation	is	zero.	

MI	 is	 defined	 in	 terms	 of	 entropy	 differences.	 As	 a	 motivating	 example,	
consider	a	 roll	of	a	 fair	6-sided	die.	The	outcome	of	any	particular	 roll	 follows	a	
uniform	 distribution	 over	 the	 6	 possible	 values,	 with	 entropy	 log2 6 .	 If	 an	
observer	 is	 told	 that	 the	 result	 of	 a	 particular	 roll	 is	 an	 even	number,	 there	 are	
now	 3	 possible	 values,	 all	 equally	 likely,	 and	 the	 entropy	 of	 this	 distribution	 is	
log2 3 .	The	difference	between	these	entropies	is	1	bit:	

	

	Thus,	1	bit	quantifies	the	amount	of	information	conveyed	by	the	knowledge	
“this	 roll	 is	 even”,	 and	 corresponds	 to	 a	 halving	 of	 the	 uncertainty	 about	 the	
outcome	(from	6	possibilities	to	3).	

log2 6 − log2 3= log2
6
3
= log2 2 = 1
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There	 are	 three	 mathematically	 equivalent	 ways	 to	 define	 MI	 based	 on	
entropy	differences,	each	providing	a	different	perspective	on	the	interpretation	
of	 the	 resulting	 measure.	 For	 illustration	 within	 a	 neuroimaging	 context,	 S	
denotes	 a	 random	 variable	 representing	 some	 stimulus	 feature	 that	 is	 varied	
across	 multiple	 presentations	 (e.g.	 in	 the	 visual	 domain,	 edge	 contrast,	 or	
orientation,	or	opacity;	in	the	auditory	domain	loudness,	pitch	and	so	forth)	and	R	
some	 neural	 response	 (e.g.	 EEG	 voltage,	 MEG	 source	 amplitude	 or	 fMRI	 bold	
voxel	response	measured	at	a	specific	site	at	a	specific	post-stimulus	latency).	

	
I(R;S) = H (S)− H (S | R)

= H (R)− H (R | S)
= H (R)+ H (S)− H (R,S)

		 (1)	

Here,	H (S | R) 	is	the	conditional	entropy:	the	expectation	over	values	r	of	R	of	
the	 entropy	 of	 the	 distribution	 of	 S	 conditional	 on	 r	 .	H (R,S) 	represents	 the	
entropy	 of	 the	 joint	 distribution	 of	 R	 and	 S	 (i.e.	 the	 two	 dimensional	 variable	
obtained	by	combining	R	and	S).		

The	first	expression	in	Eq.	(1)	shows	that	MI	quantifies	the	average	reduction	
in	uncertainty	about	which	stimulus	S	(e.g.	edge	contrast,	or	auditory	pitch)	was	
presented	after	observation	of	a	response	R	(e.g.	MEG	source	amplitude	or	fMRI	
bold	 response).	 The	 second	 expression	 demonstrates	 the	 symmetry	 of	MI,	 and	
shows	 that	 it	 equally	 quantifies	 the	 average	 reduction	 in	 uncertainty	 about	 the	
neural	 response	 when	 the	 stimulus	 is	 known.	 Here	 it	 is	 useful	 to	 revisit	 the	
analogy	with	variance	–	MI	measures	the	entropy	explained	by	knowledge	of	the	
second	variable,	which	is	conceptually	similar	to	the	notion	of	variance	explained	
with	 linear	 correlation.	 However,	 unlike	 linear	 correlation,	 MI	 makes	 no	
assumption	on	the	form	of	the	relationship.		

The	 third	 expression	 in	 Eq.	 (1)	 shows	 that	 MI	 quantifies	 the	 difference	 in	
entropy	between	a	model	in	which	the	two	variables	are	statistically	independent	
and	 the	 true	 joint	 distribution	 (H (R,S) ).	 The	 statistically	 independent	model	 is	
given	 by	 the	 product	 of	 the	 marginal	 distributions	 of	 the	 two	 variables,	 with	
entropy	 .	 MI	 can	 also	 be	 expressed	 as	 the	 Kullback-Leibler	 (KL)	
divergence	 (a	 measure	 of	 distance	 between	 probability	 distributions)	 between	
the	statistically	independent	model	and	the	true	joint	distribution	(Akaike,	1992).		
In	 fact,	 in	 the	 discrete	 case,	 if	 the	 probability	 distributions	 are	 estimated	 via	 a	
histogram	(multinomial	maximum	likelihood)	method	and	then	used	to	estimate	
MI	directly	 from	the	definition,	 this	estimate	 is	proportional	 (with	a	 scale	 factor	
depending	on	the	number	of	data	points)	to	the	effect	size	for	the	log-likelihood	
ratio	test	of	independence,	often	called	the	G-test	(Sokal	and	Rohlf,	1981).	The	G-
test	statistic	is	equal	to	this	maximum	likelihood	direct	MI	estimate,	multiplied	by	
a	 factor	 ,	 and	 is	 chi-square	 distributed	 with	 the	 same	 degrees	 of	
freedom	 as	 the	 corresponding	 chi-square	 test:	 ,	

.	 The	 Neyman-Pearson	 lemma	 (Neyman	 and	 Pearson,	 1933)	
states	 that	 for	 a	 given	 significance	 level,	 the	 likelihood	 ratio	 test	 is	 the	 most	

H (R)+ H (S)

2N log(2)
2N log(2)I ~ χ 2 (df )

df = R −1( ) S −1( )
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powerful	statistical	test	for	comparing	two	nested	models	(used	here	to	test	for	
independence).	This	motivates	perhaps	the	most	useful	interpretation	of	MI	from	
a	 neuroimaging	 perspective:	 a	 statistical	 test	 for	 independence.	 It	 is	 worth	
repeating	 that	 all	 three	 expressions	 above	 are	 mathematically	 equivalent,	 but	
considering	 them	 separately	 explains	 the	 different	 interpretations	 that	 can	 be	
applied	to	MI.		

MI	 has	 several	 useful	 properties	 that	 are	 worth	 highlighting.	 As	 discussed	
above,	 it	 is	 symmetric	 in	 the	 variables	 considered.	 It	 is	 also	 additive	 for	
independent	 variables.	 Additivity	 derives	 directly	 from	 the	 mathematical	
properties	 of	 the	 logarithm:	 if	 two	 variables	 are	 statistically	 independent	 their	
joint	probability	 is,	by	definition,	the	product	of	their	 individual	probabilities	and	
therefore	 the	 log	 joint	 probability	 is	 the	 sum	of	 the	 individual	 log	 probabilities.	
This	 means	 the	 joint	 entropy	 of	 two	 independent	 variables	 is	 the	 sum	 of	 the	
individual	 entropies.	 Similarly,	 the	MI	between	 independent	pairs	of	 variables	 is	
added	 when	 they	 are	 considered	 jointly.	 Formally,	 two	 pairs	 of	 variable	 are	
independent	 if	 the	 full	 joint	 probability	 over	 all	 four	 variables	 factors	 as	 the	
product	of	the	pairwise	joint	probabilities:	

PABCD a,b,c,d( ) = PAB a,b( )PCD c,d( ) 	
In	this	case	the	 information	conveyed	by	both	pairs	 is	the	sum	of	that	conveyed	
by	each	pair:	 I(A,C;B,D) = I(A;B)+ I(C;D) .	This	 is	a	crucial	property	that	 is	not	
shared	 by	 the	 effect	 sizes	 of	 other	 statistical	 tests	 and	 which	 enables	 direct	
quantification	 of	 pairwise	 interaction	 effects	 (see	 Section	 2.6).	 MI	 measures	
dependence	on	 a	 common	 scale	 (bits),	which	provides	 a	meaningful	 effect	 size	
(Friston,	 2012)	 and	 allows	 direct	 comparisons	 across	 different	 responses,	
experimental	modalities	or	with	behavior.		

Within	 the	 field	 of	 information	 theory	 there	 are	many	mathematical	 results	
revealing	 further	 properties	 of	 the	 MI	 measure.	 A	 theorem	 called	 the	 Channel	
Coding	Theorem	(Cover	and	Thomas,	1991)	relates	MI	to	the	transmission	capacity	
of	 noisy	 communication	 channels.	 A	 noisy	 channel	 can	 be	 represented	 by	 a	
conditional	 probability	 distribution	 quantifying	 the	 relationship	 between	 the	
output	symbols	y	and	the	input	signals	x:	PY |X (y | x) .	This	is	a	fixed	property	of	the	
channel,	 but	 the	 MI	 between	 x	 and	 y	 depends	 also	 on	 the	 distribution	 of	 the	
inputs	PX (x) .	 The	maximum	 rate	 at	 which	 information	 can	 be	 transmitted	 over	
the	noisy	channel	without	errors	 (the	channel	capacity)	 is	given	by	 the	maximal	
value	 of	 MI	 over	 all	 possible	 input	 distributions.	 MI	 was	 originally	 developed	
within	 this	 coding	 framework,	 which	 represents	 communication	 as	 the	
transmission	 of	 a	 set	 of	 discrete	 symbols	 over	 a	 noisy	 channel.	 MI	 provides	
theoretical	 limits	 on	 communication	 efficiency	 and	 helped	 to	 formulate	 coding	
principles	 that	 are	 now	 pervasive	 in	 modern	 communication	 systems.	 This	
interpretation	 also	 motivated	 much	 of	 the	 early	 application	 of	 MI	 within	
neuroscience,	 viewing	 the	 neural	 pathway	 from	 the	 stimulus	 receptors	 to	 the	
recorded	 brain	 activity	 as	 a	 noisy	 communication	 channel,	 and	 using	 MI	 to	
quantify	 properties	 of	 this	 putative	 communication	 channel	 as	 well	 as	
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investigating	encoding	and	decoding	schemes	at	different	neural	 levels.	Another	
theorem	 called	 the	Data	 Processing	 Inequality	 (Cover	 and	 Thomas,	 1991)	 states	
that	 post-processing	 cannot	 increase	 information.	 Formally,	 if	 the	 response	R	 is	
transformed	 to	 a	new	 representation	P,	where	P	 is	 a	probabilistic	 function	of	R	
only	 (and	 does	 not	 depend	 on	 S),	 then	 .	This	 is	 a	 desirable	
property	 for	a	neuroimaging	 statistic	as	 it	 ensures	 that	any	 signal	processing	or	
feature	 extraction	 applied	 to	 the	 recorded	 responses	 (for	 example	 spectral	
analysis)	cannot	artificially	inflate	the	measured	effect	size,	provided	it	is	applied	
across	the	whole	data	set	without	incorporating	knowledge	of	the	stimulus.	

Given	the	above,	we	suggest	there	are	two	views	that	can	be	adopted	when	
applying	MI	in	practice	(Nelken	and	Chechik,	2007).	The	first	relies	on	the	coding	
interpretations	 of	 MI,	 and	 therefore	 requires	 accurate	 and	 bias-free	 estimates;	
this	 view	 has	 driven	most	 neuroscience	 applications	 of	MI	 to	 date.	 The	 second	
view	 considers	 MI	 more	 like	 a	 conventional	 statistical	 hypothesis	 test	 of	
independence,	comparable	to	a	t-test	or	correlation.	With	this	view,	accurate	bias-
free	 values	 are	 less	 important,	 but	determining	 statistical	 significance,	 including	
accounting	 for	 the	problem	of	multiple	comparisons,	 is	crucial.	We	suggest	 that	
this	 second	 view	 is	 more	 useful	 for	 neuroimaging.	 In	 comparison	 to	 other	
statistical	 tests,	 MI	 brings	 the	 advantages	 of	 sensitivity	 and	 robustness	
(demonstrated	in	Results),	as	well	as	additivity,	which	allows	direct	comparisons	
of	 the	MI	 from	different	 neural	 responses.	With	 the	 novel	 estimator	 presented	
here,	MI	allows	treatment	of	discrete,	continuous	and	possibly	multidimensional	
variables	within	a	common	framework	with	directly	comparable	effect	sizes	on	a	
common	 and	 meaningful	 scale.	 It	 should	 be	 noted	 that	 in	 practice,	 as	 for	 any	
statistical	 test,	 the	 measured	 effect	 size	 depends	 both	 on	 the	 strength	 of	 the	
functional	relationship	present	but	also	on	the	noise	level	of	the	recorded	signal	
(the	signal	to	noise	ratio	or	SNR).	MI,	like	any	statistical	test,	effectively	quantifies	
the	 strength	 of	modulation	 of	 the	 signal	 by	 a	 stimulus	 feature	 or	 experimental	
condition	within	the	particular	noise	profile	of	that	signal.	This	should	be	kept	in	
mind	when	comparing	these	effect	sizes	between	different	signals.	However,	the	
effect	sizes	from	other	statistical	tests,	while	also	being	affected	by	SNR	are	also	
often	strongly	dependent	on	parameters	 such	as	 the	number	of	 samples	or	 the	
particular	 degrees	 of	 freedom	 in	 the	 experimental	 design	 making	 quantitative	
comparison	between	results	much	more	difficult.		

2.3. Existing	methods	for	calculating	mutual	information	

There	 are	 several	 different	 practical	 approaches	 for	 calculating	 MI	 from	
experimental	 observations,	 which	 we	 briefly	 review	 here	 from	 a	 neuroimaging	
perspective.		

Binned	methods	

Although	 neuroimaging	 signals	 typically	 take	 continuous	 values	 (voltage	 in	
EEG,	magnetic	field	strength	in	MEG,	fMRI	BOLD	signal	amplitude)	one	commonly	
used	 approach	 for	 such	 signals	 consists	 of	 quantizing	 the	 continuous	 valued	
observations	into	a	set	of	discrete	categories	or	bins.	We	therefore	briefly	review	

I(R;S) ≥ I(P;S)
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methods	 for	 estimating	 information	 values	 on	 discrete	 spaces.	 There	 are	 two	
main	strategies	for	the	quantization	step:	either	bins	are	set	with	equal	spacing,	
or	bins	are	 sized	 to	have	approximately	equal	occupancy	 (i.e.	 if	 using	 four	bins,	
each	data	sample	is	labeled	according	to	the	quartile	of	the	empirical	distribution	
in	which	it	lies).	For	data	that	are	approximately	normally	distributed,	the	second	
method	 is	preferable,	 as	 fixed	width	bins	 result	 in	 the	extreme	bins	having	 few	
samples,	 which	 exacerbates	 the	 limited	 sampling	 problem.	 This	 is	 the	 simplest	
approach;	 much	 work	 has	 considered	 different	 methods	 to	 optimize	 this	
quantization	step	(Darbellay	and	Vajda,	1999;	Endres	and	Foldiak,	2005;	Fraser	and	
Swinney,	1986;	Reshef	et	al.,	2011).	

Once	 the	 continuous	 signal	 is	 quantized,	 a	 common	 approach	 is	 to	 apply	
multinomial	 maximum	 likelihood	 estimation	 (the	 histogram	 estimate)	 of	 the	
underlying	distributions	and	calculate	entropy	and	MI	from	their	definitions	using	
these	distributions	(e.g.	combining	the	entropy	definition	of	Figure	1A	with	Eq	(1)).	
This	approach	 is	variously	called	the	naïve,	direct	or	plug-in	estimate	(Cover	and	
Thomas,	 1991).	 As	 noted	 earlier,	 the	 Neymann-Pearson	 lemma	 states	 that	 the	
likelihood-ratio	test	(equivalent	to	MI)	is	the	most	powerful	hypothesis	test	for	a	
given	significance	 level	 (Neyman	and	Pearson,	 1933),	a	 fact	which,	coupled	with	
the	computational	efficiency	of	calculating	binned	MI,	demonstrates	the	potential	
usefulness	 of	 this	 quantity	 as	 an	 exploratory	 statistical	 test	 for	 neuroimaging.	
Other	 properties	 of	 the	 MI	 effect	 size,	 such	 as	 additivity,	 provide	 additional	
advantages	(Section	2.6).	

However,	when	trying	to	obtain	accurate	MI	estimates	for	interpretation	from	
a	 coding	 channel	 perspective,	 there	 is	 a	 problem	 that	 the	 plug-in	 estimate	
described	above	 is	biased	upwards;	estimates	calculated	 from	finite	numbers	of	
samples	will	be	higher	than	the	true	value	even	when	averaged	over	many	sample	
sets.	A	wide	variety	of	approaches	have	been	proposed	to	address	this	problem	
(Paninski,	 2003;	 Panzeri	 et	 al.,	 2007).	 The	 simplest	 approach	 is	 to	 subtract	 the	
mean	 of	 the	 distribution	 expected	 under	 the	 null	 hypothesis	 that	 there	 is	 no	
relationship	between	the	two	variables.	As	can	be	seen	from	the	relationship	with	
the	 chi-square	 distribution	 described	 earlier	 this	 is	 given	 by	

,	where	N	is	the	number	of	samples	and	|R|,	|S|	represent	

the	 cardinality	of	 the	 two	discrete	 input	 spaces.	 This	 is	 called	 the	Miller-Madow	
correction	(Miller,	1955).	Various	extensions	have	been	proposed	to	deal	with	this	
in	 different	 situations	 such	 as	 Bayesian	 approaches	 (Nemenman	 et	 al.,	 2004;	
Panzeri	and	Treves,	1996),	specific	methods	to	estimate	entropy	and	information	
rates	 in	ongoing	processes	 (Kennel	 et	 al.,	 2005;	 Shlens	et	 al.,	 2007)	 and	 to	deal	
specifically	with	 the	sparse	binary	probability	 spaces	 that	 result	 from	measuring	
single	 neuron	 spiking	 activity	 (Archer	 et	 al.,	 2013;	 Montemurro	 et	 al.,	 2007).	
However,	 we	 stress	 again	 that	 if	 the	 goal	 of	 the	 analysis	 is	 classical	 statistical	
inference,	 bias	 correction	 is	 not	 necessary,	 and	 can	 actually	 reduce	 statistical	
power	 due	 to	 the	 increased	 variance	 of	 bias	 corrected	 estimators	 (Ince	 et	 al.,	
2012).		

R −1( ) S −1( ) / 2N log(2)
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A	 further	 consideration	 with	 binned	 methods	 is	 that	 they	 suffer	 from	 the	
curse	of	dimensionality	(Geman	et	al.,	1992).	The	number	of	parameters	that	must	
be	 estimated	 for	 the	 multinomial	 distributions	 grows	 exponentially	 with	 the	
number	of	variables	considered.	This	renders	it	practically	impossible	to	apply	this	
approach	 to	 calculate	 MI	 and	 higher	 order	 information-theoretic	 quantities	
(Sections	2.8,	2.9)	from	multivariate	spaces	with	the	amounts	of	data	that	can	be	
realistically	 collected	 from	 neuroimaging	 experiments.	 It	 may	 be	 possible	 to	
exploit	 techniques	 such	 as	 dimensionality	 reduction	 or	 clustering	 approaches,	
often	referred	to	as	vector	quantization	 in	this	context	(Wilcox	and	Niles,	1995),	
to	 directly	 quantize	 multivariate	 spaces	 into	 a	 small	 number	 of	 representative	
symbols.	However,	such	an	approach	also	removes	the	possibility	of	investigating	
the	 effects	 of	 the	 different	 variables	 in	 the	multivariate	 space,	 for	 example	 by	
considering	 the	 MI	 of	 each	 variable	 individually,	 or	 investigating	 the	 effect	 of	
correlations	 between	 them	 (Chicharro,	 2014;	 Magri	 et	 al.,	 2009;	 Panzeri	 and	
Treves,	1996).	

Continuous	methods	

Several	 methods	 exist	 for	 estimating	 MI	 between	 continuous	 variables	
without	 the	 quantization	 step.	 The	 most	 direct	 way	 is	 to	 first	 estimate	 the	
continuous	 probability	 distributions	 with	 a	 Kernel	 Density	 Estimation	 (KDE)	
technique,	and	then	numerically	integrate	those	estimates	to	obtain	MI	(Moon	et	
al.,	1995).	An	alternative	approach,	which	bypasses	explicit	estimation	of	the	joint	
distributions,	 exploits	 the	 relationship	 between	 probability	 density	 and	 local	
neighborhood	structure.	These	methods	estimate	entropy	and	MI	using	k-nearest	
neighbor	 structure	 (Faivishevsky	 and	 Goldberger,	 2009;	 Kraskov	 et	 al.,	 2004;	
Victor,	2002)	–		the	probability	densities	are	estimated	implicitly	from	the	pairwise	
distances	 between	 samples.	 These	 methods	 have	 also	 been	 extended	 through	
careful	choice	of	the	distance	metric	used.	For	example,	for	spike	trains,	various	
metrics	 can	 be	 defined	 that	 emphasize	 different	 properties	 of	 the	 spike	 trains	
(Victor,	 2005).	MI	 conveyed	by	high-dimensional	 time	 courses	 can	be	estimated	
based	on	a	hyperbolic	distance	measure	formed	from	the	correlation	coefficient	
between	pairs	of	 time	series	 (Afshin-Pour	et	al.,	 2011).	While	 these	methods	are	
relatively	 unbiased,	 they	 often	 have	 a	 high	 variance	 and	 are	 computationally	
intensive.	 This	 is	 particularly	 problematic	 when	 combined	 with	 permutation	
testing	in	a	mass-univariate	neuroimaging	context	(Groppe	et	al.,	2011).		

An	 alternative	 approach	 to	 dealing	 with	 continuous	 data	 is	 to	 assume	 a	
parametric	 form	 for	 the	 distribution.	 For	 example,	 Local	 Field	 Potentials	 (and	
similarly	M/EEG	data)	are	often	approximately	Gaussian	(Magri	et	al.,	2009).	The	
parameters	of	this	assumed	distribution	can	be	estimated	from	the	data	and	the	
entropy	and	MI	values	estimated	directly	 from	 the	parametric	model,	 for	which	
there	 are	 often	 closed	 form	expressions	 solving	 the	 integral	 definition	of	 these	
quantities.	 While	 different	 parametric	 models	 can	 be	 used	 (for	 example,	 a	 t-
distribution	 might	 be	 more	 appropriate	 for	 M/EEG	 data),	 and	 this	 approach	 is	
computationally	efficient,	 it	 is	not	clear	what	effect	a	violation	of	the	parametric	
assumptions	would	 have	 on	 the	 estimate.	 Further,	 there	 are	many	 variables	 of	
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interest,	for	example	stimulus	features	obtained	from	dynamic	naturalistic	stimuli,	
which	do	not	have	an	obviously	appropriate	parametric	form.		

2.4. Estimating	the	entropy	and	MI	of	Gaussian	variables	

For	 Gaussian	 variables,	 the	 integral	 definition	 (Figure	 1A)	 can	 be	 solved	
analytically	 resulting	 in	 a	 closed	 form	 expression	 for	 the	 entropy	 (in	 bits)	 as	 a	
function	of	the	determinant	of	the	covariance	matrix	Σ 	(with	dimensionality	k):	

	 H X( ) = 1
2 ln2

ln 2πe( )k Σ⎡⎣ ⎤⎦ 		 (2)	

This	measure	still	exhibits	some	bias	due	to	the	estimation	of	the	covariance	
matrix	from	limited	data,	but	there	exists	an	analytic	correction	to	remove	much	
of	 this	 effect	 (Goodman,	 1963;	Magri	 et	 al.,	 2009;	Misra	 et	 al.,	 2005).	 The	 bias-
corrected	entropy	estimate	is	given	by:	

H X( ) = 1
2 ln2

ln 2πe( )k Σ⎡⎣ ⎤⎦ − k ln
2

N −1
− Ψ N − i

2
⎛
⎝⎜

⎞
⎠⎟i=1

k∑⎛
⎝⎜

⎞
⎠⎟
	

where	 N	 is	 the	 number	 of	 samples	 and	 k	 is	 the	 dimensionality	 of	 X	 with	
covariance	matrix	 .	

From	equation	(1),	the	MI	between	two	Gaussian	variables	is	therefore	given	
by:	

	 I(X;Y ) = 1
2 ln2

ln
ΣX ΣY

ΣXY

⎡

⎣
⎢

⎤

⎦
⎥ 		 (3)	

where	ΣX ,	ΣY are	 the	covariance	matrices	of	X	and	Y	 respectively	and	ΣXY is	
the	covariance	matrix	for	the	joint	variable	(X,Y).	

Figure	 3	 shows	 the	MI	between	 two	 1-D	Gaussian	 variables	 as	 a	 function	of	
their	 correlation.	 This	 reveals	 two	 key	 properties.	 First,	 the	 symmetric	 shape	of	
the	graph	demonstrates	how,	since	MI	 is	an	unsigned	quantity,	 it	can	reveal	the	
strength	 but	 not	 the	 direction	 of	 a	 relationship;	 this	 is	 an	 important	 aspect	 to	
keep	 in	mind.	Second,	the	relationship	 is	clearly	non-linear.	We	suggest	that	this	
non-linearity	is	an	advantage,	especially	for	neuroimaging	studies,	since	it	results	
in	 an	enhanced	contrast	of	 strong	effects	with	 respect	 to	background	values	 in	
mass-univariate	analyses.		

While	 the	parametric	Gaussian	approach	 is	data	 robust	due	 to	 the	 relatively	
low	 number	 of	 parameters	 that	 need	 to	 be	 estimated,	 it	 is	 not	 clear	 how	 the	
estimator	 might	 perform	 if	 the	 Gaussian	 distribution	 assumption	 was	 violated,	
and	 it	 cannot	 be	 employed	 in	 many	 cases	 where	 the	 distribution	 of	 stimulus	
values	is	highly	non-Gaussian.	

	

Σ
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Figure	3	Relationship	between	correlation	and	information	for	two	1-D	Gaussian	variables.	

2.5. Estimating	MI	within	different	types	of	experimental	design	

MI	is,	like	Pearson	correlation,	a	function	of	two	variables	that	can	be	applied	
in	 practice	 to	 many	 different	 sorts	 of	 data.	 In	 order	 to	 correctly	 interpret	 a	
particular	 information	 theoretic	 analysis	 it	 is	 important	 to	 understand	 how	 the	
samples	used	to	estimate	MI	were	obtained.	Given	the	diversity	of	experimental	
designs	 employed	 in	 neuroimaging,	 the	 different	 approaches	 to	 obtaining	
samples	are	often	a	point	of	confusion.	In	this	section	we	describe	some	common	
experimental	designs	and	detail	how	MI	is	estimated	in	each	case.	

	

Figure	 4	MI	 calculation	 for	 different	 experimental	 designs.	Schematic	 illustrations	 show	how	
samples	used	to	estimate	MI	are	obtained	from	different	neuroimaging	experimental	paradigms.	
A.	 Event	 related	 design.	 Example	 data	 from	 a	 single	 sensor	 are	 recorded	 to	 repeated	
presentations	(trials)	of	two	classes	of	stimuli,	faces	(red)	or	noise	images	(blue)	(Rousselet	et	al.,	
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2014a).	 Values	 are	 extracted	 across	 presentations	 for	 a	 specific	 post-stimulus	 time	 at	 a	 specific	
sensor;	 these	 form	 the	 samples	 used	 for	 MI	 calculation.	 Kernel	 smoothed	 PDF	 estimates	 are	
shown	for	the	example	time	point.	B.	Continuous	design.	Here	the	amplitude	envelope	of	a	speech	
stimulus	 is	 effectively	 cross-correlated	with	 an	MEG	 sensor	 signal	 (Gross	et	 al.,	 2013).	 	C.	Hybrid	
design.	A	short	section	of	a	dynamic	stimulus	is	presented	many	times.	The	stimulus	is	divided	into	
bins,	 each	of	which	 is	 treated	as	 a	 separate	discrete	 stimulus.	 The	 responses	over	 the	 repeated	
presentations	 (trials)	 of	 the	 stimulus	 are	 used	 as	 samples	 (Kayser	 et	 al.,	 2012).	D.	 Two	 pairs	 of	
random	 signals	 with	 no	 autocorrelation	 (left)	 and	 with	 autocorrelation	 induced	 by	 low-pass	
filtering	(right)	are	shown.	The	dashed	red	line	indicates	a	random	coincidence	of	high	values,	the	
red	 box	 highlights	 the	 additional	 relationship	 between	 the	 neighbouring	 points	 induced	 by	 the	
autocorrelation.		

Event	related	design		

An	 event-related	 design	 consists	 of	 serial	 presentation	 of	 stimuli,	 possibly	
from	 different	 classes	 or	 with	 parametrically	 varying	 features,	 and	 possibly	
requiring	 a	 behavioral	 response.	 These	presentations	 are	 separated	 in	 time	 and	
the	analysis	begins	by	extracting	 sections	of	neuroimaging	 recordings	 following	
each	presentation.	Event-related	experiments	are	typically	analyzed	by	averaging	
response	 epochs	 to	 different	 stimulus	 classes	 (resulting	 in	 an	 Event-Related	
Potential	or	ERP)	and	performing	group	statistics.	However,	using	MI	we	can	also	
quantify	modulation	of	the	M/EEG	response	by	a	continuous	stimulus	feature	(e.g.	
a	 variation	 of	 stimulus	 orientation)	 that	 varies	 across	 trials.	 To	 apply	MI	 in	 this	
paradigm,	 each	 post-stimulus	 time	 point	 and	 sensor/source	 is	 treated	
independently	within	 a	mass-univariate	 framework	 (Groppe	et	 al.,	 2011).	 The	MI	
calculation	is	repeated	for	each	time	point	and	sensor/source,	using	the	repeated	
presentations	 of	 the	 stimulus	 as	 samples	 (Figure	 4A).	 Multiple	 comparison	
correction	is	required	over	time	points	and	sensors/sources:	this	can	be	achieved	
using	 permutation	 testing	 (repeating	 the	 calculation	 with	 shuffled	 stimulus	
values)	 combined	with	 the	method	 of	maximum	 statistics	 (Holmes	 et	 al.,	 1996;	
Nichols	and	Holmes,	2002),	or	cluster	sum	statistics	(Maris	and	Oostenveld,	2007)	
possibly	with	threshold-free	cluster	enhancement	(Pernet	et	al.,	2015;	Smith	and	
Nichols,	 2009).	 An	 advantage	 of	 this	 design	 is	 that,	 because	 each	 time	 point	 is	
analyzed	separately,	there	is	no	assumption	that	the	signal	is	stationary.		

Continuous	design	

In	 a	 continuous	 design	 an	 ongoing,	 usually	 naturalistic,	 dynamic	 stimulus	 is	
presented,	for	example	a	visual	movie	or	auditory	speech.	The	goal	of	the	analysis	
is	 to	 determine	 a	 relationship	 between	 time	 varying	 stimulus	 features	 and	 the	
M/EEG	signal.	The	analysis	 is	performed	separately	for	each	sensor/source	and	is	
similar	 to	 a	 cross-correlation.	 A	 particular	 delay	 or	 lag	 is	 chosen	 and	 the	 MI	 is	
calculated	using	the	values	of	the	lagged	signals	over	time	as	samples	(Figure	4B).	
Any	 inference	requires	multiple	comparison	correction	over	features,	delays	and	
sensors/sources.	 Since	 the	 signals	 usually	 exhibit	 strong	 autocorrelation,	 the	
permutation	 strategy	 needs	 to	 take	 this	 into	 account.	 Autocorrelation	 can	
strongly	 alter	 the	distribution	of	 the	MI	 under	 the	permutation	null	 hypothesis,	
because	 if	a	pair	of	peaks	 in	 two	signals	happened	to	coincide	by	chance,	many	
neighbouring	points	would	also	coincide	 (Figure	4D).	This	 structure	 is	 lost	 if	 the	
time-domain	 samples	 are	permuted	without	preserving	 the	 autocorrelation.	We	
therefore	 suggest	 using	 a	 circular	 shifting	 or	 blockwise	 permutation	 approach	
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when	calculating	MI	in	this	sort	of	experimental	design	(Adolf	et	al.,	2011).	While	
there	 are	 several	 block-wise	 approaches	 for	bootstrapping	 auto-correlated	 time	
series	 (Härdle	 et	 al.,	 2003;	 Politis	 and	 Romano,	 1994),	 the	 best	 approach	 for	
permutation	 tests	with	neuroimaging	data	 remains	 is	 unknown.	The	 continuous	
design	 also	 imposes	 an	 implicit	 assumption	 that	 the	 neural	 processes	 under	
consideration	are	stationary	for	the	duration	of	the	presented	stimulus.		

Hybrid	design	

A	third	approach	is	a	hybrid	design	that	combined	elements	of	both	the	event-
related	 and	 continuous	 designs	 described	 above	 (Figure	 4c).	 Here,	 a	 short	
segment	 of	 a	 dynamic	 naturalistic	 stimulus	 is	 presented	many	 times.	 The	 time-
course	 of	 the	 dynamic	 stimulus	 is	 split	 into	 a	 number	 of	 fixed-width	 time	
windows,	 each	 of	 which	 is	 treated	 as	 a	 discrete	 categorical	 stimulus.	 The	
responses	 obtained	 during	 that	 time	window	 across	 the	 repeated	 presentation	
are	 used	 as	 samples	 for	 the	MI	 calculation.	 This	 approach	 has	 frequently	 been	
applied	with	electrophysiology	data	(Strong	et	al.,	 1998)	because	 it	 results	 in	an	
efficient	 use	 of	 experimental	 time,	 and	 requires	 no	 prior	 assumptions	 on	 the	
specific	stimulus	features	driving	the	neural	response.	MI	calculated	in	this	design	
quantifies	 the	overall	 reliability	of	 the	modulation	of	 the	neural	 response	by	the	
stimulus	without	considering	specific	stimulus	features.	

As	a	measure	of	dependence	MI	 is	a	function	of	two	paired	sets	of	samples.		
However,	 in	 practice	 sets	 of	 samples	 can	 be	 obtained	 in	 different	 ways,	
depending	on	the	experimental	designs	just	reviewed:	across	experimental	trials,	
time	 points,	 or	 through	 some	 combination	 of	 the	 two.	 To	 enable	 meaningful	
interpretation	of	 any	estimated	MI	quantity,	 it	 is	 critical	 to	properly	understand	
how	the	samples	were	obtained	via	the	experimental	design.	So,	we	recommend	
clear	reporting	of	these	design	details	whenever	MI	quantities	are	used.		

2.6. Higher	order	information	theoretic	quantities	

We	here	review	some	higher	order	information	theoretic	quantities	and	their	
application	to	brain	imaging	that	we	believe	provide	particularly	useful	and	novel	
insights	 in	 the	 analyses	 of	 neuroimaging	 data.	 	We	describe	 Conditional	Mutual	
Information,	which	can	isolate	the	specific	effect	of	a	stimulus	feature	on	neural	
response,	while	controlling	the	potential	contribution	of	other	correlated	stimulus	
features;	Directed	Information	which	quantifies	the	time-lagged	causal	transfer	of	
information	 between	 two	 neural	 responses;	 Interaction	 Information	 which	
quantifies	 the	 similarity	 (or	 synergy)	 of	 representation	 of	 the	 same	 stimulus	
feature	between	two	neural	responses;	and	Directed	Feature	 Information	which	
measures	 the	 time-lagged	 causal	 communication	 of	 a	 specific	 stimulus	 feature	
between	two	neural	responses.	

Conditional	Mutual	Information	

Conditional	 Mutual	 Information	 (CMI)	 (Cover	 and	 Thomas,	 1991)	 quantifies	
the	 relationship	 between	 two	 variables	 while	 removing	 any	 effect	 of	 a	 third	
variable.	CMI	between	X	and	Y,	conditioning	out	Z	is	usually	denoted	 .	It	I X;Y | Z( )
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is	the	information-theoretic	analogue	of	partial	correlation.	However,	while	partial	
correlation	removes	only	the	linear	effects	of	the	third	variable,	CMI	controls	for	
effects	 of	 all	 orders	 and	 so	 allows	 for	 stronger	 conclusions	 to	 be	 drawn.	With	
many	 types	 of	 naturalistic	 stimuli,	 extracted	 stimulus	 features	 are	 highly	
correlated	(for	example,	luminance	of	neighboring	pixels	of	a	natural	image	or	the	
acoustic	features	of	speech).	Given	an	analysis	of	each	feature	alone,	it	is	difficult	
to	 determine	 whether	 a	 specific	 feature	 is	 genuinely	 encoded	 in	 a	 neural	
response,	or	whether	the	response	is	actually	modulated	by	a	different	correlated	
stimulus	 feature.	 CMI	provides	 a	 rigorous	way	 to	 address	 this	 issue	 (Ince	 et	 al.,	
2012),	 allowing	 strong	 conclusions	 to	 be	 drawn	 about	 the	 relationship	 between	
neural	 responses	 and	 multiple	 correlated	 stimulus	 features.	 Figure	 5	
demonstrates	 with	 a	 simulation	 the	 use	 of	 CMI	 to	 dissociate	 two	 possible	
situations	where	a	response	is	modulated	by	two	correlated	stimulus	features.		

	

Figure	 5	 CMI	 reveals	 genuine	 encoding	 of	 correlated	 stimulus	 features.	 In	 this	 simulation	we	
generated	 two	 correlated	 Gaussian	 stimulus	 features	 (covariance	 =	 0.6),	 Stim	 1	 and	 Stim	 2.	We	
generated	responses	from	two	different	models.	Response	A	(left)	was	obtained	from	stimulus	1	
plus	Gaussian	noise	(top	plot).	In	the	bottom	plot,	MI	reveals	a	relationship	with	stimulus	2	(MI	=	
0.14),	 but	 CMI	 reveals	 this	 is	 due	 only	 to	 the	 relationship	 between	 the	 features	 (CMI	 =	 0).	
Response	 B	 (right)	 was	 obtained	 on	 each	 trial	 from	 the	 sum	 of	 stimulus	 1	 and	 stimulus	 2	 plus	
Gaussian	noise.	MI	 again	 reveals	 response	dependence	with	both	Stim	 1	 and	Stim	2,	 but	CMI	 (=	
0.11)	shows	that	now	each	stimulus	is	genuinely	represented	in	the	signal.		

The	 ability	 to	 combine	 continuous	 and	 discrete	 variables	 allows	 for	 CMI	 to	
provide	a	novel	approach	to	group	statistics.	We	can	construct	a	discrete	variable	
representing	participant	 identity	 (P)	 and	use	 this	 as	 the	 conditioning	 variable	 in	
the	 definition	 of	 CMI.	 We	 can	 calculate	 the	 MI	 from	 the	 data	 pooled	 over	
participants	 (with	Gaussian	 copula	 rank	normalization	done	on	a	per-participant	
basis	 to	 account	 for	 signal	 differences,	 see	 Section	 3.1),	 and	 also	 the	 CMI	
conditioned	on	participant	 identity.	This	CMI	 is	the	average	MI	effect	size	within	
each	participant.	These	quantities	are	then	closely	related	to	the	quantities	used	
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in	the	replicated	G-test	for	independence	(Sokal	and	Rohlf,	1981),	which	provides	
three	useful	 inferences	 for	group	studies:	 First,	 is	 there	a	 significant	effect	over	
the	group	(total-G,	equivalent	to	CMI	 I(S;R | P) 	)?	This	is	closest	to	classical	group	
inference	and	 tells	 that	overall	 the	members	of	 the	group	deviate	 from	the	null	
hypothesis	(but	they	may	not	all	do	so	and	they	may	not	deviate	in	the	same	way).	
Second,	 is	 there	 a	 significant	 difference	 in	 the	 effect	 between	 participants	
(heterogeneity-G,	 equivalent	 to	 CMI	 –	 MI,	 or	 alternatively	 I(S,R;P) )?	 If	 so,	 this	
indicates	the	effect	is	not	consistent	between	participants	and	so	the	data	should	
not	be	pooled.	This	is	particularly	useful	given	that	MI	is	an	unsigned	quantity	–	all	
participants	could	have	similar	levels	of	MI	but	with	opposite	signs	of	effect.	It	can	
also	 help	 to	 identify	 situations	 where	 group	 significance	 is	 driven	 by	 a	 strong	
effect	 in	 one	 or	 a	 few	 participants,	 rather	 than	 a	 consistent	 effect	 across	 the	
group.	 This	 is	 something	 that	 is	 not	 considered	 with	 most	 existing	 group	
statistics.	Third,	is	the	effect	significant	if	the	data	is	pooled	(pooled-G,	equivalent	
to	MI)?	This	means	overall,	the	data	recorded	across	all	participants	deviates	from	
the	null	hypothesis.	This	allows	the	identification	of	cases	where	there	is	a	weak	
but	 consistent	 effect	 across	 participants,	which	might	 not	 suffice	 to	 produce	 a	
significant	 CMI	 value.	 While	 this	 approach	 requires	 further	 development	 and	
testing	 we	 mention	 it	 here	 to	 motivate	 some	 of	 the	 wide	 range	 of	 potential	
applications	for	CMI	within	neuroimaging.		

Directed	Information	(Transfer	entropy)	

CMI	also	forms	the	basis	for	an	information	theoretic	approach	to	the	analysis	
of	 causal	 relationships	 between	neural	 responses.	 Calculating	 CMI	 between	 the	
values	of	a	signal	Y,	and	the	values	of	a	signal	X	earlier	in	time,	conditioning	on	the	
earlier	 values	 of	 Y	 itself	 produces	 a	 measure	 originally	 termed	 Directed	
Information	 (DI)	 (Massey,	 1990)	 but	 frequently	 referred	 to	 as	 Transfer	 Entropy	
(TE)	 (Schreiber,	 2000).	 DI	measures	 the	 time-lagged	 dependence	 between	 two	
signals,	over	and	above	the	dependence	with	the	past	of	the	signal	itself	(its	self-
predictability;	 Figure	 6).	 This	 is	 the	 information	 theoretic	 analogue	 of	 Granger	
causality	 (Barnett	 et	 al.,	 2009;	 Granger,	 1969)	 and	 following	 the	 arguments	
developed	by	Wiener	and	Granger	(Granger,	 1969;	Wiener,	 1956)	can	be	used	to	
infer	causal	relationships	between	brain	signals,	with	some	caveats	(Bressler	and	
Seth,	2011;	Chicharro	and	Ledberg,	2012;	Chicharro	and	Panzeri,	2014;	Quinn	et	al.,	
2011;	Wibral	et	al.,	2014).	The	Gaussian	copula	estimate	we	present	below	(Section	
3)	provides	a	robust	and	computationally	efficient	method	to	estimate	DI	(Ince	et	
al.,	2015).	
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Figure	6	Schematic	of	Directed	Information	(DI)	calculation.	DI	from	X	to	Y	is	calculated	as	the	
CMI	between	the	activity	of	X	at	time	t1,	and	the	activity	of	Y	at	a	later	time	t2,	conditioned	on	the	
activity	of	Y	at	t1:		 I(Xt1

;Yt2 |Yt1 ) .	

Interaction	information	

It	is	now	widely	accepted	that	rather	than	operating	as	a	number	of	separate	
functional	 units,	 the	 brain	 functions	 as	 a	 highly	 interactive	 distributed	 network.	
For	 neuroimaging	 studies	 to	 fully	 embrace	 this	 perspective	we	 require	 tools	 to	
relate	experimental	modulations	(e.g.	effect	of	different	experimental	conditions)	
or	 stimulus	 modulations	 (effect	 of	 changing	 stimulus	 features)	 across	 multiple	
responses.	For	example,	univariate	MI	analyses	might	reveal	stimulus	modulation	
in	distinct	spatial,	temporal	or	spectral	regions	(Figure	7A).	A	natural	question	that	
arises	is:	Are	the	modulations	we	observe	in	both	regions	similar,	or	different?	In	
other	 words,	 are	 the	 responses	 in	 both	 regions	 representing	 the	 stimuli	 in	 a	
similar,	or	a	different	manner?	

Focusing	on	pairs	 of	 responses,	we	 can	 schematize	 the	 stimulus	MI	 in	 each	
response	 in	a	Venn	diagram	(Figure	7B).	 	One	quantity	of	 interest	 is	the	overlap,	
termed	 the	 redundancy	 (Panzeri	et	al.,	 2008;	Schneidman	et	al.,	 2003;	Timme	et	
al.,	 2013),	 that	 quantifies	 the	 MI	 which	 is	 shared	 between	 the	 two	 responses.	
Because	of	the	additivity	of	MI	we	can	obtain	this	quantity	directly:	summing	the	
MI	available	in	each	response	separately	counts	the	overlapping	region	twice.	We	
then	subtract	the	MI	available	when	considering	both	responses	together,	which	
counts	 the	 overlapping	 region	 once.	 The	 resulting	 value	 quantifies	 the	
redundancy	 and	 is	 equal	 to	 the	 negative	 Interaction	 Information	 (II)	 (McGill,	
1954).	Negative	II	corresponds	to	redundancy	as	described	above,	but	II	can	also	
be	positive,	 indicating	synergy	between	 the	variables.	 In	 this	case,	 the	MI	 in	 the	
pair	of	 responses	when	considered	 jointly	 is	greater	 than	 the	MI	when	 they	are	
considered	separately.	This	 implies	 that	 the	 relationship	between	 the	 responses	
on	 individual	 trials	 is	 itself	 modulated	 by	 the	 stimulus	 feature	 considered.	
Redundancy	is	bounded	above	by	three	quantities,	the	MI	between	the	stimulus	
and	each	 response	and	 the	MI	between	 the	 responses	 themselves,	 so	 it	 can	be	
normalized	by	the	minimum	of	these	three	values.		

Within	 a	 neuroimaging	 context,	 high	 redundancy	 would	 suggest	 the	 two	
responses	reflect	the	same	aspects	of	the	stimulus,	and	therefore	likely	reflect	the	
same	 processing	 pathway	 or	 mechanisms.	 Alternatively,	 independence	 (zero	
interaction	 information)	 would	 suggest	 different	 processing	 pathways	 produce	
the	observed	responses.	This	approach	can	also	be	applied	to	compare	different	
response	 representations	or	 to	 compare	 responses	 from	different	experimental	
modalities	 (e.g.	 simultaneously	 recorded	 fMRI	 +	 EEG,	 Figure	 7A).	 Similarly,	
interaction	information	can	be	applied	in	the	opposite	direction,	considering	two	
stimulus	 features	 (possibly	 from	 different	 modalities)	 and	 a	 single	 neural	
response,	 and	 quantifying	 whether	 they	 modulate	 the	 neural	 response	 in	 a	
synergistic	 or	 redundant	 fashion.	 The	multivariate	 performance	 of	 the	Gaussian	
copula	 estimate	 we	 present	 below	 (Section	 3)	 is	 crucial	 to	 allow	 accurate	
estimation	of	the	joint	MI	in	pairs	of	neural	responses	(which	themselves	can	be	
multivariate)	required	for	computing	interaction	information.	
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Figure	7	Interaction	Information:	Redundancy	and	Synergy	between	neuroimaging	responses.	A.	
Example	situations	where	two	different	neuroimaging	responses	are	modulated	by	a	stimulus	or	
task	condition,	and	it	would	be	of	interest	to	relate	the	modulation,	or	information	content,	of	the	
two	 signals.	B.	 The	additivity	of	MI	 allows	us	 to	quantify	 the	 redundancy	 (overlap)	directly	 (see	
main	text).	

It	 should	 be	 noted	 that	 one	 issue	 with	 interaction	 information	 is	 that	
synergistic	and	 redundant	effects	can	cancel	 in	 the	 final	average.	While	 it	 is	not	
clear	 to	what	 degree	 such	 cancellation	might	 occur	 in	 neuroimaging	 recordings	
this	 is	 a	 question	 that	 has	 recently	 received	much	 interest	 (Bertschinger	 et	 al.,	
2014;	Griffith	and	Koch,	2012;	Harder	et	al.,	2012;	Olbrich	et	al.,	2015;	Timme	et	al.,	
2013;	 Williams	 and	 Beer,	 2010).	 Further	 development	 and	 application	 of	
techniques	 to	 address	 the	 interplay	 between	 synergy	 and	 redundancy	within	 a	
neuroimaging	context	is	an	important	area	for	future	work.		

Interaction	 information	 can	 be	 applied	 to	 relate	 the	 information	 content	 of	
different	 neuroimaging	 responses,	 revealing	 redundant	 or	 synergistic	
representations.	 Alternative	 techniques	 to	 address	 these	 questions	 include	
classification	 images,	 representational	 similarity	 analysis	 and	 the	 temporal	
generalization	method.	Classification	images	(Murray,	2011)	obtained	from	reverse	
correlation	 of	 different	 neural	 responses	 can	 be	 directly	 compared	 to	 quantify	
similarity	 in	 stimulus	 representation	 (redundancy)	 between	 areas	 (Smith	 et	 al.,	
2004).	 A	 similar	 approach	 is	 employed	 in	 Representational	 Similarity	 Analysis	
(RSA)	 (Kriegeskorte	et	 al.,	 2008;	Kriegeskorte	and	Kievit,	 2013)	which	 compares	
representational	 geometries	 between	 different	 neural	 responses	 (not	 the	
information	 content	 in	 the	 neural	 responses,	 as	 with	 classification	 images)	 by	
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correlating	 dissimilarity	 matrices	 obtained	 from	 discrete	 category	 exemplar	
stimuli.	The	temporal	generalization	method	(King	and	Dehaene,	2014),	in	which	a	
classification	algorithm	is	trained	with	neural	responses	from	one	time	point	and	
then	 tested	 on	 another	 time	 point,	 can	 reveal	 similar	 representations	 between	
the	two	time	points.	All	of	these	methods	are	conceptually	similar	to	redundancy,	
but	 the	 information	 theoretic	 approach	 can	 also	 reveal	 synergistic	 effects,	 can	
combine	 discrete	 and	 continuous	 stimuli	 or	 responses,	 can	 be	 calculated	 while	
conditioning	 out	 correlated	 stimulus	 features	 and	 can	 be	 applied	 to	 univariate	
responses	with	the	full	spatial	or	temporal	precision	of	the	considered	recording	
modality.	It	also	provides	results	with	a	meaningful	common	effect	size	(bits),	or	
alternatively	 redundancy	 can	 be	 normalized	 to	 a	 percentage	 that	 provides	 an	
intuitive	measure	of	the	degree	of	overlap.	

Directed	Feature	Information	

We	 recently	 developed	 a	 new	 measure	 of	 functional	 connectivity	 called	
Directed	Feature	Information	(DFI)	(Ince	et	al.,	2015).	It	conceptually	extends	DI,	a	
measure	 of	 the	 amount	 of	 causal	 communication	 between	 two	 regions,	 to	
quantify	the	communication	that	is	about	a	specific	stimulus	feature.	That	is,	as	DI	
measures	the	time-lagged	relationship	between	the	responses	of	two	regions,	DFI	
quantifies	 the	 amount	 of	 DI	 that	 can	 be	 attributed	 to	 variations	 of	 a	 given	
stimulus	 feature	 (e.g.	 the	graded	presence	of	a	 face	 in	 the	stimulus	 (Ince	et	al.,	
2015)).	 	An	alternative	 interpretation	using	redundancy	 is	 that	DFI	quantifies	the	
amount	 of	 redundant	MI	 about	 the	 stimulus	 that	 is	 shared	 between	 Y	 and	 the	
past	of	X,	over	and	above	that	which	is	already	present	in	the	past	of	Y.	Therefore,	
following	 the	 Wiener-Granger	 principle,	 DFI	 can	 be	 used	 to	 infer	 the	
communication	of	 the	specific	 information	about	 the	 feature	considered	 from	X	
to	Y.	DFI	 enables	 the	 construction	of	networks	based	on	 the	 communication	of	
specific,	 task-related	 stimulus	 features	 rather	 than	 the	 networks	 typically	
constructed	from	the	overall	dependence	between	activity	in	different	areas	that	
may	 or	may	 not	 be	 directly	 task	 or	 stimulus	 related.	 Task	 effects	 on	 functional	
connectivity	can	be	addressed	with	tools	such	as	psychophysiological	interactions	
(PPI)	analysis	(Friston	et	al.,	1997;	O’Reilly	et	al.,	2012)	which	reveals	task	induced	
changes	 in	 connectivity	 within	 a	 GLM	 framework.	 The	 framework	 of	 Dynamic	
Causal	Modelling	(Friston	et	al.,	2003)	can	also	indicate	that	connectivity	between	
two	 brain	 regions	 is	 modulated	 by	 an	 external	 stimulus	 or	 condition	 such	 as	
attention	 (Penny	 et	 al.,	 2004).	 However,	 to	 our	 knowledge	 there	 is	 no	 other	
measure	of	functional	connectivity	that	directly	quantifies	the	specific	content	of	
communication	as	DFI	does,	and	so	it	represents	a	transformative	perspective	for	
network-based	 analysis	 of	 neuroimaging	 data.	 The	 Gaussian	 copula	 method	
presented	below	(Section	3)	is	crucial	to	allow	accurate	estimation	of	DFI,	since	it	
requires	 an	 additional	 conditioning	 step,	 to	 calculate	 DI	 conditioned	 on	 the	
stimulus.	The	generality	of	the	Gaussian	copula	estimate	means	this	quantity	can	
be	 applied	 to	 a	 range	 of	 situations,	 with	 discrete	 or	 continuous	 stimuli	 and	
potentially	considering	multivariate	dynamic	responses.	
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2.7. Relation	between	information	theoretic	quantities	and	other	
statistical	approaches	

Table	1	shows	equivalent	statistical	approaches	to	address	the	same	questions	
as	 the	 information	 theoretic	quantities	 reviewed	above.	This	 illustrates	how	the	
information	 theoretic	 framework	unifies	a	wide	variety	of	 statistical	 approaches	
with	effect	sizes	on	a	common	scale	across	many	different	situations.	
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Information	theoretic	quantity	 Other	statistical	approaches	

MI	(discrete;	discrete)	 Chi-square	test	of	independence	
Fishers	exact	test	

MI	(univariate	continuous;	discrete)	 2	classes:	T-test,	KS-test,	Mann-
Whitney	U	test	

ANOVA	
MI	(multivariate	continuous;	

discrete)	
2	classes:	Hotelling	T2-test	
Decoding	(cross-validated	classifier)	

MI	(univariate	continuous;	
univariate	continuous)	

Pearson	correlation	
Spearman	rank	correlation	
Kendall	rank	correlation	

MI	(multivariate	continuous;	
univariate	continuous)	

Generalized	Linear	Model	
framework	

Decoding	(cross-validated	
regression)	

MI	(multivariate	continuous;	
multivariate	continuous)	

Canonical	correlation	analysis	
Distance	correlation	

Conditional	Mutual	Information	 Partial	correlation	(continuous	
variables	and	linear	effects	only)	

Directed	Information	(Transfer	
Entropy)	

Granger	causality	

Directed	Feature	Information	 Dynamic	Causal	Modeling	
Psychophysiological	Interactions	

Interaction	Information	 Representational	Similarity	Analysis	
(redundancy	only)	

Cross-classification	decoding	
(redundancy	only)	

Mediation	analysis	
Table	 1.	 Relation	 between	 information	 theoretic	 quantities	 and	 other	 statistical	 approaches.	 Although	

Mutual	 Information	 (MI)	 is	 a	 single	 information	 theoretic	 quantity	 –	 a	 bivariate	measure	 of	 dependence	 –	
here	it	is	split	into	multiple	rows	depending	on	the	nature	of	the	two	input	variables	(indicated	in	brackets),	
because	different	classical	statistical	are	applicable	to	each	of	the	different	cases.	The	tri-variate	information	
theoretic	quantities	below	are	not	split	by	variable	type	–	but	again	each	of	their	inputs	can	be	uni-	or	multi-
variate	and	take	continuous	or	discrete	values.		

3. A	 novel	 method	 for	 MI	 estimation	 using	 a	 Gaussian	
copula	

3.1. Estimating	MI	between	two	continuous	variables	with	a	Gaussian	
copula	

We	present	here	a	new	estimator	of	MI	that	uses	the	concept	of	a	statistical	
copula	to	provide	the	advantages	of	Gaussian	parametric	estimation	(Section	2.4)	
for	 variables	 with	 any	 marginal	 distributions.	 A	 copula	 (Nelsen,	 2007)	 is	 a	
statistical	 structure	 that	 expresses	 the	 relationship	 between	 two	 random	
variables,	 independently	 of	 their	 marginal	 distributions.	 Sklar’s	 theorem	 (Sklar,	
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1959)	 states	 that	 any	 multivariate	 distribution	 can	 be	 expressed	 as	 the	
combination	of	univariate	marginal	distributions	and	an	appropriate	copula	–	the	
copula	 links	 the	 individual	 variables	 and	 represents	 the	 statistical	 relationships	
between	 them.	Copula	based	analyses	have	been	widely	 applied	 in	quantitative	
finance	(Genest	et	al.,	2009a)	and	have	recently	been	applied	to	estimate	Granger	
causality	in	neuroimaging	data	(Hu	and	Liang,	2014).	

Formally,	 Sklar’s	 theorem	 states	 that	 every	 multivariate	 cumulative	
distribution	function	F(x1,..., xk ) = P(X1 ≤ x1,...,Xk ≤ xk ) 		can	be	expressed	in	terms	
of	 its	 marginal	 cumulative	 distribution	 functions	Fi (x) = P(Xi ≤ x) 	and	 a	 copula	
function	C :[0,1]k → [0,1] 	:	 	

F(x1,..., xk ) = C(F1(x1),...,Fk (xk )) 	

If	the	marginals	Fi 	are	continuous	then	the	copula	C	is	unique.		

Figures	8A	and	8B	illustrate	the	copula	concept	with	simulated	Gaussian	data	
for	 uncorrelated	 and	 correlated	 variables	 respectively.	 Left	 hand	 scatter	 plots	
show	 1000	 simulated	 data	 points.	 Right	 hand	 scatter	 plots	 show	 the	 empirical	
copula	of	this	simulated	data:	the	empirical	cumulative	distribution	function	(CDF)	
value	 of	 each	 variable	 evaluated	 at	 each	 data	 point.	 The	 empirical	 CDF	 is	
calculated	 by	 ranking	 each	 sample	 (separately	 for	 each	 variable)	 and	 then	
rescaling	the	 integer	rank	values	to	the	range	(0,1).	Thus,	the	resulting	bi-variate	
distribution	(copula)	is	a	probability	density	over	the	unit	square.	For	independent	
variables	 (Fig.	8A)	 the	copula	 is	uniform,	while	 for	 correlated	variables	 (Fig.	8B)	
the	copula	has	non-uniform	density.		

	

Figure	 8	 Examples	 of	 Gaussian	 copulas	 and	 a	 copula-preserving	 Gaussian	 marginal	
transformation.	 A.	 Scatter	 plots	 of	 simulated	 data	 from	 two	 independent	 standard	 normal	
variables,	and	their	copula.	B.	Scatter	plots	of	simulated	data	from	two	correlated	standard	normal	
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variables	 (r=0.8),	and	their	copula.	C.	Scatter	plot	and	marginal	densities	of	data	simulated	from	
the	model	 x=exp(1.5);	 y=x+N(0,1)	 (left),	 the	 empirical	 copula	 (center)	 and	 the	 transformed	data	
with	Gaussian	marginal	but	the	same	empirical	copula	as	the	original	data	(right).		

This	is	useful	because	the	copula	linking	two	variables	is	directly	related	to	the	
MI	between	them.	The	entropy	of	the	joint	distribution	over	two	variables,	X	and	
Y,	is	equal	to	the	marginal	entropies	plus	the	entropy	of	the	copula:	

	 H (X,Y ) = H (X)+ H (Y )+ H (c) 		

where	H (c) 	is	the	entropy	of	the	copula	density,	c,	which	links	X	and	Y.		

	Plugging	 this	 into	 the	 third	 form	 of	 Eq.	 (1),	 the	 marginal	 entropies	 cancel	
revealing	that	 the	MI	between	X	and	Y	 is	equal	 to	the	negative	entropy	of	 their	
copula	 (Calsaverini	 and	Vicente,	 2009;	Kumar,	 2012;	Ma	and	Sun,	 2011;	 Zeng	and	
Durrani,	 2011);	 thus	 the	 copula	 fully	 encapsulates	 the	 relationship	 between	 the	
two	 variables.	 A	 corollary	 of	 this	 is	 that	 MI	 does	 not	 depend	 on	 the	 marginal	
distributions	of	the	individual	variables.		

We	 can	 therefore	 estimate	MI	by	 applying	 continuous	 entropy	 estimates	 to	
the	 empirical	 copula	 density	 (Ma	 and	 Sun,	 2011);	 however	 these	 can	 still	 be	
computationally	 and	data	 intensive.	 Instead	we	exploit	 the	 corollary	mentioned	
above;	 since	 the	 copula	 entropy,	 and	 hence	 the	 MI,	 does	 not	 depend	 on	 the	
marginal	distributions	of	the	original	variables,	we	can	transform	the	marginals	in	
any	 way	 we	 see	 fit.	 As	 long	 as	 we	 preserve	 the	 empirical	 copula	 linking	 the	
variables,	 the	 statistical	 relationship	 that	 is	 quantified	by	MI	will	 be	 unchanged.	
We	therefore	transform	the	marginals	to	be	standard	Gaussian	variables,	to	which	
we	 can	 apply	 the	 efficient	 parametric	 MI	 estimate	 described	 in	 the	 previous	
section.		

Figure	8C	 illustrates	this	transformation;	the	variable	plotted	on	the	x-axis	 is	
drawn	 from	 an	 exponential	 distribution	 (rate=1.5);	 the	 variable	 on	 the	 y-axis	 is	
that	value	added	to	a	standard	normal.	The	left	hand	scatter	plot	of	1000	samples	
from	this	model	shows	the	non-Gaussian	marginal	distributions	of	these	data	and	
the	 copula	 plot	 (center)	 illustrates	 the	 dependence	 between	 the	 variables.	 For	
each	 sample,	 the	 transformed	 value	 of	 each	 variable	 is	 obtained	 as	 the	 inverse	
standard	normal	CDF	evaluated	at	the	empirical	CDF	value	of	that	sample.	By	the	
probability	 integral	 transform,	 the	 empirical	 CDF	 values	 of	 the	 data	 sample	 are	
uniformly	 distributed	 and	 so	 this	 transformation	 produces	 a	 data	 set	 that	 has	
perfect	standard	normal	marginals.	This	transformed	data	set	preserves	the	same	
empirical	copula	as	the	original	data	(right);	in	other	words,	the	rank-relationships	
between	 the	 variables	 are	 preserved.	 In	 practice,	 the	 empirical	 CDF	 is	 not	
computed	explicitly;	 instead	the	rank	of	each	sample	is	obtained	and	normalized	
by	N+1,	where	N	 is	 the	number	of	 samples.	 This	 results	 in	 a	uniform	distributed	

sample	 taking	 values	 in	 the	 range	
1

N +1
, N
N +1

⎡
⎣⎢

⎤
⎦⎥
	at	 which	 the	 inverse	 standard	

normal	 CDF	 is	 directly	 evaluated.	 Transformations	 of	 this	 type	 are	 sometimes	
referred	to	as	Inverse	Normal	Transformations	and	have	been	used	in	fields	such	

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/043745doi: bioRxiv preprint first posted online Mar. 16, 2016; 

http://dx.doi.org/10.1101/043745
http://creativecommons.org/licenses/by-nc-nd/4.0/


26	

as	 genetics	 (Beasley	 et	 al.,	 2009).	 We	 can	 then	 calculate	 MI	 between	 the	
transformed	variables	using	the	parametric	Gaussian	model	(Eqs	1,3).	

The	parametric	MI	estimation	implicitly	imposes	the	assumption	of	a	Gaussian	
copula	 linking	 the	 two	 variables.	 If	 this	 assumption	 is	 violated	 the	 resulting	MI	
value	 may	 not	 be	 accurate.	 However,	 since	 the	 Gaussian	 distribution	 has	 the	
maximum	entropy	for	a	given	mean	and	covariance	(Cover	and	Thomas,	1991)	the	
Gaussian	copula	must	also	have	the	maximum	entropy	of	possible	copula	models	
preserving	 second	 order	 statistics.	 Otherwise	 the	 distribution	 of	 the	 same	 two	
Gaussian	variables	linked	by	this	higher	entropy	copula	would	itself	have	a	higher	
entropy,	 contradicting	 the	 proven	maximum	 entropy	 property	 of	 the	 Gaussian.		
Since	 MI	 is	 the	 negative	 copula	 entropy	 other	 choices	 of	 parametric	 copula	
models	(or	direct	estimation)	could	give	higher,	but	not	 lower	MI	estimates:	the	
Gaussian	 copula	 estimate	 is	 therefore	 a	 lower	 bound	 to	 the	 true	 MI	 value	
(Calsaverini	 and	 Vicente,	 2009).	 This	 lower	 bound	 property	 is	 crucial	 for	 an	
estimator	that	is	to	be	used	for	statistical	testing,	since	it	ensures	that	erroneous	
high	values	cannot	occur	due	 to	mismatched	assumptions	between	 the	statistic	
and	 the	 data;	 the	 measured	 value	 is	 always	 lower	 than	 the	 true	 value.	 In	 the	
multivariate	 case,	 the	 same	 Gaussian	 marginal	 transformation	 is	 applied	
independently	to	each	constituent	variable.		This	preserves	the	rank	relationships	
both	within	 and	 between	 the	 two	multivariate	 variables	 considered	 for	 the	MI	
calculation	 (X	 and	 Y	 in	 Eq.	 1).	 Zeng	 and	 Durrani	 (2011),	 propose	 to	 estimate	MI	
between	 univariate	 variables	 via	 a	 Gaussian	 copula,	 the	 entropy	 of	 which	 is	
estimated	via	Kendall’s	tau.	The	advantage	of	the	approach	presented	here	is	that	
it	can	be	applied	to	multidimensional	variables	(see	Section	4)	and	to	estimate	MI	
between	discrete	and	continuous	variables	(Section	3.2).	

In	 summary,	 by	 transforming	 each	 univariate	 marginal	 to	 be	 a	 standard	
normal	and	applying	a	Gaussian	parametric	MI	estimate,	we	obtain	a	lower-bound	
estimate	 of	 the	MI.	We	 call	 this	 estimator	 Gaussian-Copula	Mutual	 Information	
(GCMI).	As	 the	value	of	 this	estimate	depends	only	on	 the	empirical	CDF	of	 the	
data,	it	is	in	effect	a	rank	statistic	and	so	robust	to	outliers.	Although	the	estimate	
derives	 from	 a	 parametric	 assumption	 on	 the	 copula	 linking	 the	 two	 variables,	
there	is	no	assumption	made	on	the	marginal	distributions	and	it	can	therefore	be	
applied	to	any	continuous	valued	data.	Within	neuroimaging,	we	propose	use	of	
this	 estimator	 as	 a	 test	 statistic	 for	 a	 permutation	 based	 hypothesis	 test	 with	
approaches	that	include	correction	for	the	problem	of	multiple	comparisons	(see	
Section	4).	We	therefore	focus	primarily	on	this	application	in	this	paper	(Sections	
4.1-4.3).	 However,	we	 address	 in	more	 detail	 the	 bias	 of	 the	 estimator	 and	 the	
implications	of	the	lower	bound	property	in	Section	4.4.	

3.2. Estimating	MI	between	a	discrete	and	a	continuous	variable	using	a	
copula	based	approach	

In	 many	 cases,	 the	 statistical	 inference	 of	 interest	 concerns	 a	 continuous	
valued	 neuroimaging	 signal	 recorded	 in	 response	 to	 a	 number	 of	 different	
discrete	stimuli	or	under	different	experimental	 conditions.	Here	we	extend	 the	
copula-based	 MI	 estimate	 introduced	 above	 to	 this	 problem	 –	 estimating	 MI	
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between	 a	 (univariate)	 discrete	 and	 a	 (potentially	 multivariate)	 continuous	
variable.	Despite	 the	wide	applicability	of	 such	a	measure,	 the	practical	 issue	of	
computing	MI	between	discrete	and	continuous	variables	has	so	far	received	little	
attention	(Lefakis	and	Fleuret,	2014;	Magri	et	al.,	2009;	Ross,	2014).	One	approach	
would	be	to	discretize	the	continuous	variable	as	described	in	Section	2.3	and	use	
standard	binned	methods.	However	as	discussed	previously	this	suffers	from	the	
curse	of	dimensionality	when	considering	multivariate	spaces.	Instead	we	develop	
an	approach	based	on	the	Gaussian	copula	estimator	we	described	above.	

Given	the	lack	of	explicit	parametric	distributions	over	mixed	continuous	and	
discrete	spaces	it	is	convenient	to	start	from	the	second	form	of	Eq.	(1).	With	X	as	
the	 (possibly	 multivariate)	 continuous	 neuroimaging	 response	 and	 Y	 as	 the	
discrete	 stimulus,	 we	 have	 from	 the	 definition	 of	 conditional	 entropy	
H (X |Y ) = P(y)H (X |Y = y)

y
∑ 	and	so	:	

	 I(X;Y ) = H (X)− P(y)H (X |Y = y)
y
∑ 		 (4)	

It	 is	 straightforward	to	apply	Gaussian	parametric	entropy	estimation	to	 the	
conditional	entropy	terms,	using	the	samples	available	for	each	y	value.	However,	
when	 considering	 the	 unconditional	 entropy	 term	 H(X)	 there	 are	 two	 possible	
approaches.	One	option	 is	to	form	the	mixture	model	from	the	class	conditional	
parametric	fits	and	numerically	integrate	this	to	obtain	the	entropy	(since	there	is	
no	 closed	 form	 expression	 for	 the	 entropy	 of	 a	 Gaussian	 mixture).	 A	 second	
option	is	to	fit	a	separate	parametric	model	of	the	same	form	to	the	full	data	set	
and	 use	 that	 to	 estimate	 the	 unconditional	 entropy.	 Figure	 9	 illustrates	 these	
issues	with	an	example	of	data	generated	under	a	Gaussian	model	with	different	
means	 for	 each	 of	 two	 discrete	 stimulus	 conditions	 (Figure	 9A).	 Figure	 9B	
illustrates	 the	 two	 different	 models	 that	 can	 be	 used	 to	 estimate	 the	
unconditional	entropy	term,	the	actual	mixture	density	 (solid	 line)	or	a	Gaussian	
fit	 (dotted	 line).	 Whichever	 strategy	 is	 used,	 MI	 is	 obtained	 as	 the	 difference	
between	the	entropy	of	the	chosen	unconditional	model,	and	the	average	of	the	
entropies	of	the	class	conditional	distributions	(Figure	9C).	It	is	not	clear	if	either	
of	 these	 is	 more	 appropriate	 than	 the	 other	 –	 each	 preserves	 a	 different	
interpretation	of	MI.	The	 first	 leads	 to	an	MI	estimate	more	consistent	with	 the	
Kullback-Leibler	 divergence	 expression	 of	 MI;	 it	 is	 the	 property	 of	 a	 single	
distribution	 (the	 fitted	 parametric	 mixture	 distribution)	 and	 measures	 the	
deviation	of	 that	 distribution	 from	 a	 surrogate	 independent	model.	 The	 second	
leads	 to	 an	 MI	 estimate	 more	 consistent	 with	 a	 statistical	 testing	 viewpoint,	
comparing	 an	 unconditional	 Gaussian	 fit	 to	 class-conditional	 Gaussian	 fits	 (c.f.	
ANOVA).	
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Figure	 9	 Illustration	 of	 continuous-discrete	 MI	 calculation.	 Left	 hand	 panels	 show	 data	
generated	from	a	Gaussian	mixture	model	with	two	classes.	A.	Sampled	data	points	and	PDF	for	
each	 class.	 B.	 Sampled	 data	 points,	 unconditional	 PDF	 of	 the	 data	 (solid	 line),	 and	 maximum	
likelihood	Gaussian	fit	(dotted	line).	C.	True	unconditional	PDF	(solid	line),	unconditional	Gaussian	
fit	 (dotted	 line)	 and	 de-meaned	 class-conditional	 PDF’s	 (red/blue).	 Right	 hand	 panels	 show	 the	
same	 data	 after	 copula	 Gaussian	 transformation.	D.	 Transformed	 sampled	 data	 points	 and	 PDF	
(kernel	 density	 estimate)	 for	 each	 class.	E.	 Transformed	 sampled	data	 points	 and	 unconditional	
probability	density	(solid	line).	F.	Unconditional	PDF	(black)	and	class-conditional	PDF’s	(red/blue).	

Fortunately,	 the	 use	 of	 the	 copula	 transform	 removes	 this	 dichotomy.	
Motivated	 by	 the	 previous	 section	we	 apply	 the	 same	 copula	 transform	 to	 the	
unconditional	 data	 to	 obtain	 a	 surrogate	 data	 set	 with	 a	 standard	 normal	
distribution	 (Figure	 9E),	while	 preserving	 the	 rank-class	 relationships.	 Figure	 9D	
shows	the	resulting	class	conditional	distributions.	Again,	MI	 is	calculated	as	the	
difference	 between	 the	 entropy	 of	 the	 unconditional	 entropy	 and	 the	 average	
entropy	of	the	class	conditional	distributions	(Figure	9F;	Eq.	(4)).	Now,	by	design	
the	 true	unconditional	distribution	 is	Gaussian,	 so	 the	unconditional	Gaussian	 fit	
and	the	class-conditional	mixture	are	equivalent.	

It	is	clear	that	after	the	transformation,	the	class-conditional	distributions	are	
no	longer	Gaussian	(Figure	9D),	so	our	Gaussian	conditional	entropy	estimate	will	
be	 an	 approximation.	 However,	 again	 the	maximum	entropy	 property	works	 in	
our	 favor:	 each	 class	 conditional	 Gaussian	 entropy	 estimate	 will	 necessarily	 be	
greater	 than	 or	 equal	 to	 the	 true	 entropy	 of	 the	 class.	 Since	 the	 conditional	
entropy	terms	are	subtracted	 in	Eq.	 (4)	 this	ensures	the	estimated	MI	 is	again	a	
lower	 bound	 on	 the	 true	 MI.	 As	 in	 the	 continuous	 case,	 this	 method	 can	 be	
applied	whatever	the	original	distribution	of	the	data;	it	does	not	require	Gaussian	
classes	 as	 in	 the	 example	 shown	 here.	 The	 key	 feature	 is	 that	 the	 copula	
transform	preserves	the	rank-class	relationships,	and	results	in	a	data	set	to	which	
the	 parametric	 Gaussian	 entropy	 estimates	 can	 be	 applied.	Note	 that	while	 the	
unconditional	 entropy	 H(X)	 itself	 is	 not	 invariant	 to	 the	 copula	 normalization	
transform,	as	 in	 the	continuous	case,	 the	mutual	 information,	as	a	difference	of	
entropies,	is	invariant	to	marginal	transformation.			
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3.3. Estimating	MI	in	spectral	data:	phase	and	power	

In	many	applications,	 analyzing	M/EEG	signals	 in	 the	 frequency	domain	 is	of	
particular	 interest	 because	of	 the	potential	 for	 understanding	brain	oscillations,	
which	 are	 increasingly	 thought	 to	 underlie	many	 important	 cognitive	 processes	
(Schnitzler	 and	 Gross,	 2005;	 Singer,	 2013;	 Thut	 et	 al.,	 2012;	 Wang,	 2010).	 The	
methodological	 issues	 surrounding	 how	 best	 to	 extract	 a	 frequency-based	
representation	from	M/EEG	data,	and	perform	statistical	analysis	on	such	data	to	
determine	 the	 presence	 and	 nature	 of	 stimulus	 modulations	 have	 therefore	
received	much	attention	(Gross,	2014).	In	this	section,	we	emphasize	how	our	new	
Gaussian	copula	MI	estimate	can	be	applied	to	spectral	data.	In	fact,	the	approach	
described	here	can	be	applied	to	any	vector	quantity	(e.g.	magnetic	field	vectors)	
to	separate	stimulus	modulations	of	amplitude	and	direction.	

The	most	commonly	employed	frequency	or	time-frequency	decompositions	
result	 in	 a	 complex	valued	 spectral	 signal	 in	each	 frequency	band	 (Gross,	 2014).	
The	 real	 and	 imaginary	 parts	 of	 this	 complex	 signal	 can	 be	 treated	 as	 a	 2D	
response	 variable	 within	 the	 Gaussian-copula	 MI	 framework,	 where	 each	 is	
transformed	 separately	 prior	 to	 parametric	 MI	 estimation.	 This	 can	 be	 applied	
with	 either	 the	 continuous-discrete	 or	 continuous-continuous	 MI	 as	 described	
previously,	to	allow	quantification	of	categorical	experimental	differences,	as	well	
as	encoding	of	continuous	valued	stimulus	features.		

There	 is	 often	 additional	 interest	 in	 characterizing	 more	 specifically	 which	
aspects	 of	 the	 oscillatory	 activity	 –	 amplitude	 (the	 size	 of	 the	 oscillations)	 or	
phase	 (the	 temporal	 alignment	 of	 the	 oscillations)	 –	 are	 modulated	 by	
experimental	 conditions	 or	 activity	 in	 other	 brain	 signals	 (frequency	 bands	 or	
regions).	 Binned	 MI	 measured	 have	 already	 been	 applied	 to	 these	 sorts	 of	
problems	(Belitski	et	al.,	2010;	Gross	et	al.,	2013;	Kayser	et	al.,	2009;	Schyns	et	al.,	
2011;	 Szymanski	 et	 al.,	 2011),	 and	 a	 number	 of	 other	 techniques	 have	 also	 been	
developed	(Kempter	et	al.,	2012;	Lachaux	et	al.,	1999;	Voytek	et	al.,	2013).	In	such	
analyses,	it	is	unclear	how	best	to	model	or	bin	the	data,	because	phase,	the	angle	
of	the	complex	spectral	signal,	is	a	circular	variable	which	‘wraps	around’	and	has	
no	 clear	 ranking	 or	 extremal	 values	 (Berens,	 2009;	 Lee,	 2010).	 One	 example	 is	
whether	 the	 arbitrary	 cut-off	 in	 the	 numerical	 representation	 used	 should	 be	
taken	 as	 a	 bin	 edge	 (usually	 angles	 are	 returned	 in	 the	 range	 [-π,	π]	 but	 this	 is	
implementation	dependent).		

With	 the	 Gaussian	 copula	 MI	 estimator,	 we	 suggest	 extracting	 phase	 and	
amplitude	 of	 a	 complex	 spectral	 signal	 as	 follows	 (Figure	 10).	 We	 obtain	
amplitude	in	the	normal	way	as	the	absolute	value	of	the	complex	number.	This	is	
then	 transformed	 as	 a	 1D	 variable	 for	 use	 with	 a	 Gaussian-copula	 MI	 estimate	
(Figure	10;	center	amplitude	plots).	Often	the	square	of	this	amplitude	is	used	and	
referred	to	as	power,	but	we	note	that	within	the	copula	framework	MI	is	a	rank	
statistic	 and	 since	 amplitude	 is	 always	 positive	 and	 the	 square	 operation	 is	
monotonic,	 the	 choice	 of	 power	 or	 amplitude	 does	 not	 affect	 the	MI	 value.	 To	
isolate	phase,	we	normalize	the	complex	number	by	 its	amplitude,	resulting	 in	a	
2D	variable	where	all	points	lie	on	the	unit	circle.	We	then	apply	the	2D	Gaussian	
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copula	 MI	 estimate	 on	 this	 2D	 variable;	 transforming	 each	 dimension	
independently	 (Figure	 10,	 right	 hand	 phase	 plots).	 Maintaining	 a	 2D	
representation	 for	 phase	 avoids	 the	 technical	 issues	 surrounding	 circular	
variables,	particularly	modeling	 joint	distributions	of	circular	and	 linear	variables.	
The	Data	Processing	 Inequality	ensures	 that	 since	only	 information	about	phase	
goes	 into	 the	 calculation	 (all	 amplitude	 variation	 is	 removed),	 whatever	
processing	we	apply	(here	copula	transformation)	cannot	add	information	and	so	
our	estimate	of	MI	carried	by	phase	is	valid.	Figure	10	illustrates	the	approach	with	
two	 simulated	 systems,	 one	 in	 which	 only	 phase	 is	 modulated	 by	 a	 discrete	
experimental	condition	 (Figure	 10A),	and	one	 in	which	only	power	 is	modulated	
(Figure	10B).	The	bar	graphs	of	MI	in	the	different	signal	representations	(Figure	
10;	 far	 right)	 demonstrate	 that	 this	 approach	 can	 correctly	 dissociate	 the	 two	
types	of	modulation.		

	

Figure	 10	Gaussian-copula	MI	applied	to	complex	spectral	data.	Spectral	data	were	generated	
from	two	two-class	models.	A.	Phase	was	sampled	from	von	Mises	distribution	with	class	specific	
mean	and	amplitude	was	sampled	from	chi-square	distribution	(common	across	classes).	B.	Phase	
was	drawn	from	von	Mises	distribution	(common	across	classes)	and	amplitude	was	sampled	from	
chi-square	 distribution	 with	 class-specific	 degrees	 of	 freedom.	 A,B.	 Left	 plots	 show	 generated	
complex	 data	 (top)	 and	with	marginal	 copula	 transformation	 (bottom).	 Solid	 lines	 show	p=0.01	
contours	of	multivariate	Gaussian	pdf.	Centre	plots	show	amplitude	(top)	and	copula	transformed	
amplitude	 (bottom).	 Right	 plots	 show	 amplitude-normalized	 spectrum	 (top)	 and	 copula	
transformed	 normalized	 spectrum	 (bottom).	 Far	 right	 bar	 graphs	 show	 the	 MI	 value	 in	 the	
different	data	representations.	
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We	 emphasize	 that	 our	 approach	 is	 equally	 applicable	 to	 the	 single-trial	
outputs	 of	 any	 frequency	 or	 time-frequency	 decomposition	 including	 Empirical	
Mode	 Decomposition,	 Hilbert-Huang	 transform	 and	 matching	 pursuit	 methods	
(Gross,	2014).	 It	 can	also	be	applied	 to	other	vector	quantities	 to	determine	 the	
relative	 effects	 on	 amplitude	 and	 direction,	 for	 example	 planar	 magnetic	 field	
gradients	(see	Section	4.2).	

4. Results	

Our	 primary	 intention	 is	 to	 present	 our	 new	 Gaussian-Copula	 Mutual	
Information	(GCMI)	estimator	as	the	effect	size	for	a	practical	statistical	test	for	
neuroimaging,	that	can	be	considered	as	a	drop-in	replacement	for	a	number	of	
different	 established	 statistical	measures	 (Table	 1).	 In	 this	 section	we	 therefore	
first	 validate	 the	 performance	 of	 the	 new	 estimator	 when	 employed	 as	 a	
statistical	test	and	provide	some	example	applications	(Sections	4.1-4.3).	The	data	
used	for	 the	simulation	and	examples	 in	 this	section	are	available	 in	 (Ince	et	al.,	
2016).	 We	 then	 demonstrate	 the	 bias	 and	 mean-square	 error	 of	 the	 GCMI	
estimator	 compared	 to	 other	 mutual	 information	 estimators	 on	 simulated	
systems	as	well	as	the	example	data	sets	(Section	4.4).	

4.1. Discrete	experimental	condition	with	continuous	EEG	response:	Face	
detection	

We	performed	a	number	of	analyses	in	order	to	evaluate	the	performance	of	
the	Gaussian	copula	continuous-discrete	MI	estimator	(Section	3.2)	as	a	statistical	
test	for	neuroimaging	applications.	We	consider	EEG	data	collected	from	a	single	
subject	 within	 an	 event-related	 design	 (Section	 2.3),	 with	 presentation	 of	 two	
classes	of	images:	faces	and	noise	textures.	Data	were	band-pass	filtered	between	
1-30Hz	and	the	Current	Source	Density	transformation	was	applied	(Rousselet	et	
al.,	2014a).	We	calculated	MI	independently	for	each	time	point	and	sensor	using	
samples	 collected	 from	 the	 repeated	 presentations	 (Figure	 4A).	 A	 common	
approach	with	neuroimaging	studies	is	to	apply	a	permutation	test	together	with	
the	method	of	maximum	 statistics	 in	 order	 to	 correct	 for	multiple	 comparisons	
(Holmes	 et	 al.,	 1996;	Nichols	 and	Holmes,	 2002).	We	 calculated	 the	 two-sample	
Kolmogorov-Smirnov	 (KS)	 test	 statistic	 (Massey,	 1951)	 for	 each	 time	 point	 and	
sensor	 from	 all	 the	 available	 1000	 trials	 and	 used	 this	 as	 the	 ground-truth	 to	
evaluate	tests	performed	with	smaller	numbers	of	trials	(Figure	11A,	top	left,	color	
plot).	We	performed	the	calculation	over	all	sensors	and	time	points	1000	times,	
randomly	permuting	 the	stimulus	class	 labels	each	 time.	We	took	 the	maximum	
value	over	sensors	and	time	points	for	each	of	these	permutations,	and	used	the	
99th	percentile	of	these	maximum	values	as	the	threshold	for	significance	(Figure	
11A,	 top	 left,	 black	 and	 white	 plot).	 This	 procedure	 corrects	 for	 multiple	
comparisons	 and	 provides	 a	 Family-Wise	 Error	 Rate	 (FWER)	 of	 0.01.	 We	 then	
repeatedly	sub-sampled	smaller	sets	of	trials	from	the	full	data	set	and	repeated	
the	mass-univariate	analysis	for	various	statistics,	together	with	the	permutation	
approach.	Figure	11A,	middle	and	bottom	show	the	results	for	a	sub-sampled	set	
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of	100	trials.	The	significant	sensors	and	time	points	were	then	compared	to	the	
full	data	KS-test	ground	truth	to	evaluate	the	performance	of	different	statistics.	

We	considered	four	types	of	statistic,	the	new	Gaussian	copula	MI,	binned	MI	
(with	 2,4	 or	 8	 bins),	 the	 t-test	 (unequal	 variances)	 and	 the	 KS-test.	 Figure	 11B	
shows	the	time-courses	obtained	from	a	single	sensor	for	each	of	these	statistics.	
First	we	considered	the	statistical	performance	of	the	null-hypothesis	test	based	
on	 each	 of	 these	 statistics	 over	 the	 full	 space	 of	 time	 points	 and	 sensors,	 as	 a	
function	of	the	number	of	trials	available.	For	each	sample	size	(25,	50,	100,	200,	
500),	we	randomly	selected	that	number	of	trials	from	the	full	data	set,	calculated	
all	 the	 statistics	 including	 200	 class-shuffled	 permutations,	 and	 determined	 the	
final	multiple-comparison	corrected	inference	for	each	statistic.	We	repeated	this	
procedure	 50	 times	 for	 each	 sample	 size.	 For	 each	 statistic	 and	 sample	 size	we	
then	 compared	 the	 result	 of	 the	 inference	 to	 the	 ground	 truth,	 considering	
sensitivity	 (Figure	 11C,	 top	 left),	 specificity	 (Figure	 11C,	middle	 left)	 and	MI	with	
ground-truth	(Figure	11C,	bottom	left).	Sensitivity,	or	true	positive	rate,	measures	
the	proportion	of	significant	ground-truth	 responses	 that	are	correctly	detected	
with	 each	 test	 statistic.	 Sensitivity	 increases	 with	 number	 of	 samples	 for	 all	
statistics,	the	t-test	and	copula	MI	have	the	highest	sensitivity	over	the	full	range	
of	trials	considered.	Specificity,	or	true	negative	rate,	measures	the	proportion	of	
non-significant	 ground-truth	 responses	 that	 are	 correctly	 detected	 as	 non-
significant	 by	 each	 test.	 Specificity	 is	 high	 for	 all	 statistics.,	 due	 to	 the	 strong	
control	 on	 FWER	 provided	 by	 the	 permutation	 approach.	 Binned	 MI	 methods	
have	the	highest	specificity,	the	t-test	has	the	 lowest,	with	the	copula	MI	taking	
intermediate	values.	Finally,	as	an	overall	measure	of	the	performance	of	the	test	
statistics	we	 consider	 the	MI	 in	 the	 contingency	 table	 (or	 confusion	matrix)	 for	
each	test	(Quian	Quiroga	and	Panzeri,	2009);	i.e.	for	each	repetition,	the	discrete	
MI	 between	 the	 binary	 ground-truth	 significance	 and	 the	 significance	 for	 that	
repetition,	 with	 time	 points	 and	 sensors	 providing	 the	 samples	 for	 the	 MI	
calculation.	 Similar	 in	 spirit	 to	 Matthew’s	 Correlation	 Coefficient	 (Baldi	 et	 al.,	
2000;	 Matthews,	 1975),	 this	 provides	 an	 overall	 accuracy	 measure,	 which	
incorporates	 possible	 asymmetries	 resulting	 from	 unbalanced	 classes.	With	 this	
measure,	 all	 test	 statistics	 perform	 better	 with	 more	 samples;	 the	 t-test	 and	
copula	MI	 stand	 out	 as	more	 accurate	 than	 the	 other	 tests,	with	 the	 t-test	 the	
most	accurate.		

Next,	we	fixed	the	number	of	trials	at	100,	and	performed	a	similar	analysis	to	
evaluate	the	robustness	of	the	different	statistics	to	the	presence	of	outliers.	On	
each	of	50	repetitions,	a	certain	percentage	of	trials	were	chosen	(0-50%)	and	for	
those	 trials	 the	 EEG	 signal	 at	 each	 sensor	 and	 time	 point	 was	 replaced	 with	 a	
random	variable	drawn	from	a	Gaussian	distribution	with	standard	deviation	(s.d.)	
5	 times	 greater	 than	 the	 actual	 s.d.	 of	 that	 response.	 We	 again	 computed	
sensitivity,	specificity	and	MI	in	the	confusion	matrix	against	the	same	undistorted	
1000	 trial	 KS-test	 ground	 truth	 (Figure	 11C,	 right).	 The	 sensitivity	 and	 MI	 plots	
illustrate	the	robustness	of	the	copula	MI	statistic	compared	to	the	t-test.	While	
the	t-test	has	slightly	higher	sensitivity	for	the	original	data,	5%	of	trials	corrupted	
by	outliers	is	already	enough	to	reduce	the	sensitivity	of	the	t-test	to	half	that	of	
the	 copula	MI.	 The	 KS	 test	 shows	 higher	 robustness	 than	 the	 GCMI	 based	 test	
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when	there	 is	a	 lot	of	noise	(>10%	of	trials	corrupted	by	noise).	However,	at	 low	
noise	 levels	 it	 is	 less	 sensitive	 (GCMI	 detects	 ~60%	 more	 true	 positives	 in	 the	
original	data	with	no	corrupt	trials).	A	similar	pattern	is	seen	when	comparing	the	
binned	 MI	 methods	 to	 GCMI	 –	 reduced	 sensitivity	 at	 low	 noise	 levels,	 but	
increased	robustness	at	high	levels	of	noise.		
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Figure	 11	Performance	 of	 Gaussian	 copula	MI	 estimator	 as	 a	 statistical	 test	 for	 EEG	 data	with	
discrete	stimuli	 in	event	related	design.	A.	Statistics	are	calculated	for	each	sensor	and	time	point	
(left	colored	image	plots)	and	significance	determined	with	permutation	testing	and	the	method	
of	maximum	statistics	(black	and	white	image	plot).	Topologies	are	shown	for	two	indicated	time	
points.	The	KS-test	with	all	1000	trials	is	used	as	the	ground-truth	(top);	copula	MI	with	100	trials	
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(middle)	 and	 t-test	 with	 the	 same	 100	 trials	 (bottom)	 are	 shown.	 The	 results	 of	 permutation	
significance	for	these	statistics	are	shown	(black)	overlaid	on	the	ground-truth	significance	(grey).	
B.	Example	time-courses	of	various	effect	sizes	calculated	with	200	(left)	or	30	(trials).	C.	Results	
of	numerical	 investigation	of	the	performance	of	various	statistics	with	permutation	testing,	as	a	
function	of	the	amount	of	data	available	(left	column)	and	as	a	 function	of	the	amount	of	noise	
added	to	the	data	(right	column).	

In	 summary,	 when	 performing	 mass-univariate	 analyses	 with	 permutation	
testing	and	maximum	statistics,	 the	copula	MI	provides	similar	 sensitivity	 to	 the	
more	commonly	employed	t-test,	but	is	considerably	more	robust	to	the	presence	
of	outliers.	It	also	performs	better	than	binned	MI	estimates,	and	can	be	applied	
to	multi-variate	responses.		

4.2. Continuously	varying	experimental	condition	with	continuous	MEG	
response:	listening	to	speech	

To	evaluate	 the	performance	of	 the	Gaussian	 copula	 continuous-continuous	
MI	estimator	(Section	3.1)	we	consider	MEG	data	collected	from	a	single	subject	
within	a	 continuous	design	with	an	auditory	 speech	 stimulus	 (Gross	et	 al.,	 2013;	
Park	 et	 al.,	 2015).	 For	 simplicity	 we	 focus	 here	 on	 a	 sensor-level	 time-domain	
analysis.	 Since	 previous	 work	 has	 shown	 speech	 entrainment	 mostly	 at	 lower	
frequencies,	 we	 extracted	 the	 wideband	 amplitude	 envelope	 of	 the	 speech	
stimulus	 (Chandrasekaran	 et	 al.,	 2009;	 Gross	 et	 al.,	 2013)	 and	 then	 low-pass	
filtered	with	 a	 12	 Hz	 cutoff	 (3rd	 order	 non-causal	 Butterworth).	 The	MEG	 signal	
was	obtained	from	a	248-magnetometer	whole-head	MEG	system	(MAGNES	3600	
WH,	4-D	Neuroimaging).	We	band-pass	filtered	in	the	range	2-12	Hz	(3rd	order	non-
causal	 Butterworth),	 downsampled	 to	 50Hz	 and	 then	 computed	 the	 planar	
gradient	tangential	to	the	head	at	each	magnetometer	(Bastiaansen	and	Knösche,	
2000).	 This	 potentially	 simplifies	 interpretation	 of	 sensor-level	 data	 because	 it	
typically	 results	 in	 maximal	 signal	 directly	 above	 the	 corresponding	 source	
(Hämäläinen	et	al.,	1993).	We	analyse	450s	of	recording	(22,500	samples	at	50Hz)	
during	which	the	subject	listened	to	a	spoken	story.	Similar	to	a	cross-correlation	
of	two	signals	we	calculate	the	relationship	between	the	speech	envelope	and	the	
MEG	signal	over	a	range	of	delays	(0-350ms).	
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Figure	 12	Performance	of	Gaussian	 copula	MI	estimator	as	a	 statistical	 test	 for	MEG	data	with	
continuous	stimuli	in	a	continuous	design.	A.	Gaussian	copula	MI	is	calculated	between	the	speech	
envelope	and	the	full	2D	planar	gradient	response	(top),	the	amplitude	(middle)	or	the	direction	
(bottom)	of	the	planar	gradient	vector,	for	each	sensor	and	time	point	(left	colored	image	plots).	
Significance	is	determined	with	block	permutation	testing	and	the	method	of	maximum	statistics	
(black	 and	white	 image	 plots).	 Topologies	 are	 shown	 for	 the	 indicated	 time	 points.	B.	 Example	
cross-correlation	 style	 delay	 plots	 of	 various	 effect	 sizes	 calculated	 with	 100s	 or	 450s	 of	
continuous	 stimulation.	 C.	 Results	 of	 numerical	 investigation	 of	 the	 performance	 of	 various	
statistics	 with	 block	 permutation	 testing,	 as	 a	 function	 of	 the	 amount	 of	 data	 available	 (left	
column)	and	as	a	function	of	the	amount	of	noise	added	to	the	data	(right	column).	

The	 resulting	 planar	 gradient	 signal	 consists	 of	 a	 2d	 magnetic	 field	 vector	
(tangential	 to	 the	 head)	 at	 the	 position	 of	 each	 magnetometer.	 Typically,	 the	
amplitude	of	this	2d	vector	is	used	as	the	response	signal	of	interest	(Oostenveld	
et	 al.,	 2011).	 However,	 using	 the	 multivariate	 MI	 estimate	 we	 can	 quantify	 the	
modulation	of	the	full	2d	signal,	as	well	as	breaking	down	the	stimulus	effects	on	
amplitude	and	direction	separately	(Figure	12A),	as	described	for	spectral	data	in	
Section	 3.3.	 The	 top	 row	 of	 Figure	 12A	 shows	 the	 MI	 between	 the	 speech	
envelope	and	the	2d	planar	gradient	for	each	channel	and	speech-MEG	delay	lag.	
The	 black	 and	 white	 image	 plot	 shows	 the	 multiple	 comparison	 corrected	
permutation	 significance	 (p=0.01,	 200	 permutations,	 10s	 block	 permutation	
scheme	to	preserve	signal	autocorrelation).	The	middle	row	shows	the	same	for	
the	1d	Pythagorean	amplitude	(Fieldtrip	default),	and	the	bottom	row	shows	the	
MI	 in	 the	 planar	 gradient	 direction	 only,	with	 the	 amplitude	 effects	 normalised	
out	as	described	for	phase	 in	Section	3.3.	This	shows	that,	while	 there	 is	a	 focal	
and	statistically	significant	modulation	of	the	planar	gradient	amplitude	over	the	
auditory	cortices,	 in	 fact	the	direction	of	the	planar	gradient	 is	modulated	much	
more	strongly	by	the	speech	envelope	over	a	much	wider	area,	with	MI	values	an	
order	of	magnitude	higher.	 In	addition,	the	timing	of	the	peak	effect	 is	different	
(earlier	for	the	amplitude).	This	suggests	that	focusing	on	the	amplitude	of	time-
varying	magnetic	field	vectors	could	result	in	reduced	sensitivity,	and	provides	an	
example	 of	 the	 potential	 advantage	 of	 using	 multivariate	 statistics	 that	 allow	
separate	treatment	of	the	direction	and	amplitude	of	vector	values.		

However,	 to	 investigate	 the	 properties	 of	 the	 copula	 MI	 estimator	 when	
employed	within	a	permutation	based	null-hypothesis	testing	framework	we	use	
the	 1d	 amplitude	 signal,	 as	 there	 are	 not	 so	 many	 well-established	 statistical	
methods	 to	 compare	 for	 evaluating	 the	 relationships	 in	 the	 continuous	
multivariate	case.	Figure	12B	shows	the	delay	time	courses	for	the	sensor	with	the	
strongest	amplitude	modulation.	To	determine	the	performance	of	the	copula	MI	
as	 a	 statistical	 test	 we	 proceed	 as	 described	 in	 the	 previous	 section.	 First,	 we	
obtained	 ground-truth	 significance	 by	 applying	 Spearman’s	 rank	 correlation	
between	 the	 speech	 envelope	 and	 the	 lagged	 MEG	 planar	 gradient	 amplitude	
using	 the	 full	 450s	 of	 available	 data	 (1000	permutations,	 10s	 block	 permutation	
scheme,	maximum	statistics	corrected	over	all	sensors	and	18	delays	considered).	
Then	we	subsampled	(using	the	10s	block	scheme)	reduced	amounts	of	data	(50-
300s,	 repeated	30	 times	each).	 For	each	 subsampled	 repetition	we	computed	a	
range	 of	 statistics	 (copula	 MI,	 binned	 MI,	 Pearson	 correlation,	 Spearman	
correlation)	and	determined	the	significance	of	each	with	block	permutation	and	
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maximum	 statistics	 (p=0.05,	 100	 permutations,	 10s	 blocks)	 (Figure	 12C,	 left	
column).	 Sensitivity,	 specificity	 and	MI	with	 ground-truth	 show	 that	 the	 copula	
method	 performs	 similarly	 to	 rank	 correlation	 (slightly	 lower	 sensitivity,	 slightly	
higher	MI	with	ground-truth).		

To	investigate	the	robustness	of	the	statistics	we	fixed	the	amount	of	data	at	
300s	 and	 investigated	 the	 effect	 of	 corrupting	 a	 fixed	percentage	of	 trials	with	
Gaussian	noise	with	standard	deviation	5	times	larger	than	that	of	the	MEG	signal	
(Figure	 12C,	 right	 column).	 Here	 Spearman	 rank	 correlation	 performs	 best	
(measured	 both	 with	 sensitivity	 and	 MI),	 but	 the	 copula	 MI	 is	 close.	 Pearson	
correlation	 is	 very	 sensitive	 the	 addition	 of	 outliers	 with	 sensitivity	 reduced	 to	
~30%	 of	 that	 of	 the	 copula	MI	 with	 only	 5%	 corruption.	 The	 use	 of	 Spearman’s	
correlation	 to	 define	 the	 ground-truth,	 combined	 with	 the	 low	 number	 of	
significant	responses	may	result	 in	a	bias	towards	the	particular	property	of	that	
measure.		

In	 summary,	 when	 performing	 mass-univariate	 analyses	 with	 permutation	
testing	 and	 maximum	 statistics,	 the	 continuous	 copula	 MI	 provides	 similar	
performance	 as	 Spearman	 rank	 correlation.	 However,	 as	 an	 MI	 estimate	 it	
benefits	 from	 the	 useful	 properties	 of	 the	 MI	 effect	 size	 (e.g.	 additivity;	 see	
below),	 and	we	 have	 shown	 that	 the	 ability	 to	 consider	multivariate	 responses	
and	separately	quantify	modulations	of	vector	direction	and	amplitude	have	the	
potential	to	provide	more	detailed	interpretations	of	MEG	data.		

4.3. Pairwise	temporal	interactions	reveal	modulation	of	gradient	in	EEG	

To	 provide	 an	 example	 application	 of	 interaction	 information	 (Section	 2.6;	
Figure	 7)	 we	 consider	 temporal	 interactions	 within	 an	 event-related	 EEG	
experiment	 with	 a	 continuous	 valued	 stimulus	 feature.	 The	 task	 was	 face	
detection,	with	 stimuli	 as	 in	 Figure	4A,	but	here	 the	 images	were	 sampled	with	
Bubbles:	 randomly	 positioned	 Gaussian	 apertures	 which	 selectively	 reveal	
different	parts	of	the	image	on	different	trials	(Gosselin	and	Schyns,	2001).	Since	it	
has	been	shown	that	in	this	paradigm	it	is	primarily	the	visibility	of	the	eye	region	
which	modulates	the	recorded	EEG	(Rousselet	et	al.,	2014a),	we	focus	here	on	the	
visibility	of	the	left	eye	region	(a	continuous	scalar	value	for	each	trial	obtained	by	
summing	 the	 bubble	masks	within	 the	 eye	 region)	 and	 its	 effects	 on	 a	 contra-
lateral	 right	 occipital-temporal	 electrode.	We	 consider	 1092	 trials	 from	 a	 single	
observer	 during	 which	 a	 bubbled	 face	 image	 was	 presented	 (Rousselet	 et	 al.,	
2014b).	EEG	data	were	band-pass	filtered	(1-30Hz)	and	the	Current	Source	Density	
transformation	was	applied	(Rousselet	et	al.,	2014a).		
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Figure	 13	 Temporal	 interaction	 information	 reveals	 modulation	 of	 gradient.	 A.	 Interaction	
information	between	EEG	voltage	at	pairs	of	time	points.	Positive	values	correspond	to	synergy,	
negative	 values	 indicate	 redundancy.	B.	 Interaction	 information	 between	 bivariate	 EEG	 voltage	
and	 temporal	 derivative	 at	 pairs	 of	 time	 points.	C.	As	 B,	 but	 only	 redundancy	 is	 shown.	D.	 The	
mean	 ERP	 was	 calculated	 separately	 for	 each	 decile	 of	 the	 stimulus	 feature	 (white	 to	 blue	
increasing	eye	visibility).	Spearman	correlation	and	MI	are	calculated	for	the	EEG	voltage	at	each	
time	 point.	 E.	 The	 MI	 time	 course	 is	 calculated	 using	 the	 temporal	 derivative	 (upper)	 and	 a	
bivariate	 response	 consisting	 of	 the	 EEG	 voltage	 and	 temporal	 derivative	 at	 each	 time	 point	
(lower).	This	bivariate	MI	time	course	(black)	is	shown	with	the	MI	time	courses	of	the	constituent	
variables	(EEG	voltage,	solid	gray;	temporal	derivative,	dotted	gray	lines).	F.	We	down-sampled	the	
data	 to	 125	 Hz,	 and	 calculated	 the	 new	MI	 arriving	 at	 each	 time	 point	 (see	 text).	G.	 Effect	 of	
including	the	temporal	derivative	with	the	2d	planar	gradient	response	from	Section	4.2,	Figure	12.		

Figure	 13D	 shows	 how	 the	 modulation	 of	 the	 evoked	 time-course	 by	 the	
stimulus	 feature	 (eye	 visibility),	 and	 how	 this	 can	 be	 quantified	 by	 calculating	
Spearman’s	 rank	 correlation	 or	 copula	 MI	 independently	 at	 each	 post-stimulus	
time	 point	 (Figure	 4A).	 However,	 with	 MI	 we	 can	 calculate	 the	 Interaction	
Information	 (II)	 between	 pairs	 of	 time	 points	 (Figure	 13A).	 This	 allows	 us	 to	
investigate	 the	 relationship	 between	 the	 modulation	 of	 the	 evoked	 signal	 at	
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different	 times:	 positive	 II	 indicates	 a	 synergistic	 relationship	 between	 the	
responses;	negative	II	means	they	are	redundant.	Here,	the	MI	curve	has	3	peaks;	
the	 temporal	 interaction	 matrix	 reveals	 that	 the	 second	 and	 third	 peaks	 are	
mutually	 redundant,	 but	 the	 first	 peak	 appears	 to	 carry	 independent	 MI.	
Interestingly,	 there	 are	 striking	 patches	 of	 local	 synergy	 (indicated	with	 dashed	
lines),	equivalent	in	magnitude	to	the	largest	MI	values	over	the	time	course	and	
corresponding	 to	 time	points	where	 there	 is	no	MI	 in	 the	 raw	EEG	voltage.	This	
indicates	that	in	those	regions,	even	though	observing	the	recorded	voltage	at	a	
single	time	point	does	not	reveal	anything	about	the	value	of	the	stimulus	feature	
the	relationship	between	nearby	time	points	is	highly	informative.		

The	 simplest	 quantification	 of	 the	 relationship	 between	 neighboring	 time	
points	 is	 the	 temporal	 gradient.	 To	 determine	 if	 this	 could	 account	 for	 the	
observed	synergy	we	calculated	 the	central	difference	 temporal	gradient	of	 the	
EEG	 voltage	 for	 each	 trial	 and	 considered	 the	 MI	 in	 this	 response	 (Figure	 13E,	
upper).	Peaks	 in	the	gradient	MI	occur	concurrently	with	zero	points	of	the	raw	
voltage	MI.		To	incorporate	the	modulation	of	both	response	representations	we	
combine	 them	 in	 a	 bivariate	 response	 consisting	 of	 the	 EEG	 voltage	 and	 the	
temporal	gradient	at	each	time	point.	We	calculate	the	time	course	of	MI	about	
the	stimulus	feature	in	this	bivariate	response	(Figure	13E,	lower).	Relating	this	to	
the	 voltage	MI	 time	 course	and	 the	actual	 ERP	modulation	 (Figure	 13D)	we	 can	
see	 that	 the	 zero	points	of	 the	 triple-peak	MI	profile	 result	 from	zero-crossings	
where	 the	 sign	 of	 the	 correlation	 changes,	 due	 to	 the	 shape	 of	 the	modulated	
bimodal	ERP.	However,	by	considering	the	conditional	ERPs	 it	 is	clear	that	these	
points	 fall	within	 the	 time	window	where	 the	 overall	 shape	 of	 the	 evoked	 EEG	
response	 is	modulated	by	the	stimulus	feature.	We	therefore	take	the	view	that	
considering	 the	 gradient	 together	 with	 the	 voltage	 (Figure	 13E)	 provides	 a	
substantial	 advantage:	 these	 artifactual	 dips	 are	 smoothed	 out,	 providing	 a	
clearer	picture	of	the	time	window	over	which	the	EEG	signal	is	modulated	by	the	
changing	stimulus.		

We	 suggest	 that	 including	 the	 gradient	 of	 recorded	 neuroimaging	 signals	
could	 be	 a	 useful	 principle	 across	 a	 range	 of	 different	 analyses.	 For	 example,	
returning	to	the	MEG	data	set	under	continuous	speech	stimulation	(Section	4.2),	
including	the	temporal	derivative	of	each	planar	gradient	component	(resulting	in	
a	 4d	 response)	 has	 the	 same	 effect	 of	 smoothing	 out	 the	 artifactual	 MI	 zero	
resulting	 from	 a	 change	 of	 sign	 in	 the	 effect	 (Figure	 13G).	 Again,	 this	 gives	 a	
clearer,	smoother	picture	of	the	range	of	delays	over	which	the	amplitude	of	the	
speech	envelope	modulates	the	MEG	signal,	which	is	made	possible	with	the	use	
of	a	multivariate	statistic.	

We	 can	 repeat	 the	 temporal	 interaction	 analysis	 on	 our	 bivariate	 responses	
(Figure	 13B).	 This	 reveals	 that	 there	 is	 now	 little	 synergy,	 the	 main	 MI	 peak	 is	
mostly	 self-redundant,	 but	 the	 early	 part	 of	 the	 MI	 time-course	 appears	 to	 be	
independent	 from	 the	 main	 peak.	 To	 give	 a	 clearer	 picture	 we	 show	 the	
redundancy	only	(negative	II;	Figure	13C).	A	block	structure	is	clearly	apparent;	the	
early	MI	appears	to	be	independent	from	the	bulk	of	the	later	MI	(indicated	with	
dashed	lines).	This	suggests	a	functional	differentiation	between	the	initial	P100,	
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and	the	later	N170:	they	appear	to	be	modulated	by	the	eye	visibility	in	different	
ways	 and	 so	 possibly	 reflect	 different	 processing	 pathways.	 This	 would	 not	 be	
apparent	from	inspecting	the	ERP	modulation	(Figure	13D)	or	the	MI	time	course	
(Figure	13E)	alone.	

Another	application	of	the	copula	MI	framework	allows	us	to	directly	quantify	
the	emergence	of	novel	MI	over	 time.	For	each	 time	point,	we	calculate	 the	MI	
about	the	stimulus	feature	available	 in	the	(bivariate)	EEG	response	at	that	time	
point.	We	then	subtract	the	MI	that	 is	 redundant	with	that	at	the	previous	time	
point,	leaving	only	the	amount	of	new	MI	about	the	stimulus	arriving	at	that	time.	
Mathematically,	 this	 is	 equivalent	 to	 calculating	 the	 CMI	 I eye;Rti | Rti−1( ) .	 Figure	
13F	shows	the	result	of	this	analysis.	Two	peaks	of	novel	MI	are	clearly	visible.	In	
this	analysis,	for	 later	time	points	the	response	at	the	time	of	the	two	peaks	are	
also	conditioned	out	to	ensure	only	genuinely	new	MI	is	measured.	The	first	peak	
corresponds	 to	 the	 early	 P100	 modulation,	 the	 second	 to	 the	 stronger	 N170	
modulation.	This	analysis	corroborates	the	temporal	interaction	presented	above,	
revealing	 that	 there	 appear	 to	 be	 two	 separate	 processes	 modulated	 by	 the	
stimulus	 feature	–	one	beginning	at	84	ms	 (P100),	 and	one	beginning	at	 132	ms	
(N170).		

In	summary,	we	have	shown	a	few	illustrative	examples	of	the	application	of	
pairwise	interaction	information,	focusing	on	interactions	in	the	temporal	domain	
with	 EEG	 data.	 We	 have	 shown	 how	 viewing	 pairwise	 interactions	 in	 terms	 of	
synergy	and	redundancy	about	a	stimulus	feature	can	provide	useful	insights	–	for	
example	 by	 revealing	 the	 importance	 of	 considering	 the	 temporal	 derivative	
when	 evaluating	 stimulus	 modulation	 of	 an	 evoked	 signal,	 and	 allowing	 us	 to	
directly	 quantify	 the	 emergence	 of	 new	 information	 over	 time.	 We	 emphasize	
that	 this	 approach	 is	 completely	 general	 and	 can	be	 used	 across	wide	 range	of	
different	responses	(Figure	7A).		

4.4. Bias	and	Mean-square-error	of	the	GCMI	estimator	

We	 have	 so	 far	 focused	 primarily	 on	 the	 properties	 of	 the	 GCMI	 estimator	
when	 used	 for	 a	 permutation-based	 null-hypothesis	 significance	 test.	 This	 is	 for	
two	reasons.	First,	 the	null-hypothesis	statistical	testing	approach	 is	widely	used	
in	neuroimaging	and	is	perhaps	the	most	 likely	application	for	most	users	of	our	
new	 estimator.	 The	 performance	 in	 terms	 of	 sensitivity	 and	 specificity	 in	
comparison	with	existing	statistical	techniques	is	of	crucial	interest	for	such	users	
(Sections	4.1,	4.2).	Second,	as	described	in	Section	3,	the	GCMI	estimator	provides	
a	 lower-bound	 estimate	 to	 MI.	 This	 lower	 bound	 property	 complicates	 direct	
interpretation	of	the	estimated	MI	quantities.	In	this	section	we	explicitly	address	
this	issue.	

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/043745doi: bioRxiv preprint first posted online Mar. 16, 2016; 

http://dx.doi.org/10.1101/043745
http://creativecommons.org/licenses/by-nc-nd/4.0/


42	

	

Figure	 14	Bias	 properties	 of	 the	 Gaussian-copula	mutual	 information	 estimator.	A.	 Data	were	
simulated	from	bivariate	Gaussian	distributions	with	4	levels	of	correlation	(0.2,0.4,0.6,0.8)	and	MI	
between	 the	 two	 variables	was	 calculated	with	 a	 range	 of	methods.	 Upper	 panels	 show	mean	
(error	 bars	 show	 25th	 –	 75th	 percentiles)	 over	 500	 simulations	 as	 a	 function	 of	 the	 number	 of	
samples	(log	scale)	 for	4	different	MI	estimators	(see	text):	GCMI	(blue),	KSG	nearest-neighbour	
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estimator	 (k=3,	 orange),	 	 2	 and	 4	 equi-populated	 bins	 (dark	 purple,	 light	 purple	 respectively).	
Binned	 estimates	 are	 corrected	 with	 Miller-Madow	 bias	 correction.	 Lower	 panels	 show	 mean	
square	error	of	the	methods	(error	bars	show	s.e.m.)	compared	to	the	analytic	ground	truth	value.		
B.	The	same	simulation	framework	was	applied	to	data	sampled	from	a	tri-variate	Gaussian.	One	
variable	represented	the	stimulus	and	was	correlated	to	a	varying	degree	(0.2,0.4,0.6)	with	each	
of	 the	 response	 variables	 (which	 were	 themselves	 weakly	 correlated	 with	 r=0.1).	 C.	 500	 sub-
samples	of	different	sizes	were	drawn	from	the	two-class	event-related	EEG	data	set	described	in	
Section	4.1.	Plot	 shows	mean	 (error	bars	 show	25th	–	75th	percentiles).	D.	500	sub-samples	of	5s	
blocks	were	drawn	from	the	continuous	MEG	data	set	described	in	Section	4.2.	Plot	shows	mean	
(error	bars	show	25th	–	75th	percentile).		

Figure	14	shows	estimated	MI	as	a	function	of	sample	size	for	various	systems	
and	MI	estimators.	We	first	consider	a	bi-variate	Gaussian	system	(1d	stimulus,	1d	
response)	 with	 different	 levels	 of	 correlation.	 Figure	 14A	 shows	 the	 expected	
value	 (mean)	 and	 variation	 (error	 bars	 show	 25th	 –	 75th	 percentiles)	 over	 500	
independent	simulations,	as	a	function	of	the	number	of	samples	(log	scale).	For	
Gaussian	 systems	 the	 true	 value	 can	 be	 calculated	 analytically	 and	 is	 indicated	
with	a	dashed	line.	For	comparison	we	include	binned	methods,	with	2	and	4	equi-
populated	bins	for	each	signal	with	Miller-Madow	bias	correction	applied	(Miller,	
1955).	 We	 also	 include	 the	 Kraskov-Stögbauer-Grassberger	 k-nearest-neighbor	
method	 as	one	of	 the	most	widely	 used	 continuous	MI	 estimators	 (Khan	et	 al.,	
2007;	Kraskov	et	al.,	 2004;	Lindner	et	al.,	 2011;	 Lizier,	 2014).	Across	 the	 range	of	
sample	 sizes	 considered,	 the	 GCMI	 estimator	 has	 similar	 bias	 to	 the	 KSG	
estimator,	but	considerably	 lower	variance,	which	results	 in	systematically	 lower	
mean-square-error	 (lower	panels).	The	2-bin	method	has	similar	bias	 to	GCMI;	4-
bins	 suffers	 from	 larger	 bias.	 However,	 the	 MSE	 for	 these	 binned	 measures	 is	
substantially	 higher,	 because	 even	 in	 the	 large	 sample	 limit	 they	 systematically	
under-estimate	 the	 true	 continuous	 information	 (although	 the	 estimate	 gets	
closer	with	a	higher	number	of	bins).	 Figure	 14B	 shows	a	 similar	 simulation	 in	a	
multivariate	case	–	here	a	tri-variate	Gaussian	representing	a	uni-variate	stimulus	
which	modulates	both	components	of	a	 two-dimensional	 response.	We	observe	
similar	 relationships	between	the	methods;	GCMI	has	 lower	bias,	 lower	variance	
and	 lower	 MSE	 than	 the	 KSG	 estimator.	 The	 binned	 methods	 suffer	 from	
increased	bias	and	again	under-estimate	the	continuous	MI.		

For	these	simulations,	the	dependence	between	the	variables	by	construction	
does	 follow	a	Gaussian	 copula,	 hence	 the	 lower	bound	of	 the	GCMI	estimate	 is	
tight.	With	real	data	this	is	not	necessarily	the	case.	We	performed	similar	analysis	
of	the	bias	of	the	estimator	with	the	experimental	data	presented	in	Sections	4.1	
and	4.2.	Bootstrap	 sampling	 (with	 replacement)	 is	 not	 suitable	 for	use	with	 the	
nearest	neighbor	based	KSG	estimator	due	to	the	effects	of	repeated	data	points	
on	 the	nearest-neighbour	calculation	 (Abadie	and	 Imbens,	2008).	 	We	 therefore	
sub-sample	data	sets	without	 replacement.	Figure	 14C	shows	the	 results	 for	 the	
two-class	 event-related	 EEG	 dataset	 considered	 in	 Section	 4.1	 with	 the	 same	
channel	 as	 Figure	 11B.	 Here	 we	 apply	 the	 Kozachenko	 and	 Leonenko	 nearest-
neighbour	 entropy	 estimator	 (Kozachenko	 and	 Leonenko,	 1987)	 to	 the	 class-
conditional	and	unconditional	data	set	and	calculate	MI	following	Eq.	(3).	Due	to	
the	 combinatorial	 properties	 of	 subsampling	 from	 the	 1078	 trials,	 there	 is	 less	
variation	 in	 the	 largest	 data	 sample:	 the	 value	 there	 is	 close	 to	 that	measured	
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from	the	entire	data	set.	The	GCMI	measure	produces	similar	estimates	to	the	4-
bin	discrete	method,	with	similar	asymptotic	value,	but	lower	variance	and	much	
lower	 bias	 at	 small	 samples.	 The	 k-NN	 method	 does	 produce	 a	 slightly	 higher	
estimate	suggesting	that	there	maybe	some	non-Gaussian	copula	dependence	in	
this	 data	 set.	 However,	 as	 shown	 in	 Section	 4.1,	 the	 GCMI	 still	 provides	 an	
effective	 and	 sensitive	 statistical	 test	when	 combined	with	 permutation	 testing	
and	 the	method	of	maximum	statistics.	 Figure	 14D	 shows	a	 similar	 sub-sampled	
analysis	for	the	continuous	MEG	data	set,	using	the	channel	and	optimal	delay	lag	
shown	 in	 Figure	 12B.	 Here	 GCMI	 provides	 a	 higher	 estimate	 than	 either	 of	 the	
binned	 methods,	 with	 reduced	 bias	 (but	 similar	 variance).	 The	 KSG	 method	
appears	 to	 reach	 a	 slightly	 higher	 asymptotic	 value	 than	 the	 GCMI,	 but	 it	 is	
difficult	 to	 determine	 this	without	 a	 larger	 data	 set.	 The	KSG	method	 seems	 to	
have	 a	 larger	 bias	 and	 variance	 here	 –	 we	 suspect	 this	 is	 due	 to	 the	 nearest-
neighbour	 approach	 being	 more	 strongly	 affected	 by	 autocorrelation	 between	
nearby	temporal	samples.		

In	general	 the	GCMI	estimate	may	be	 systematically	 lower	 than	 the	 true	MI	
value,	even	in	the	large	sample	 limit.	Standard	techniques	such	as	the	bootstrap	
(Efron	and	Tibshirani,	1994)	can	be	used	to	determine	the	sampling	variability	of	
the	 estimator,	 but	 such	 techniques	 cannot	 address	 the	 deviation	 of	 the	 GCMI	
estimate	 from	 the	 true	 MI.	 Any	 deviation	 of	 the	 empirical	 data	 copula	 from	 a	
Gaussian	 copula	will	 lead	 to	 an	 underestimate	 of	 the	MI,	 due	 to	 the	maximum	
entropy	property	of	the	Gaussian	copula.	An	extreme	example	 in	the	uni-variate	
case	is	y	=	|x|+ε,	with	x	a	standard	normal.	In	this	case	due	to	the	symmetry	in	the	
empirical	 copula,	 the	GCMI	 estimate	will	 report	 0	 bits	 of	 information,	while	 the	
true	value	can	be	arbitrarily	large	depending	on	the	noise	level	(ε).	This	example	
suggests	that	for	uni-variate	variables	the	GCMI	is	sensitive	to	the	same	effects	as	
a	rank-correlation.	Another	likely	source	of	mismatch	with	the	Gaussian	copula	is	
the	presence	of	tail-dependence	 in	the	data.	For	example,	for	t-distributed	data,	
the	Gaussian	 copula	will	 have	higher	 (negative	 valued)	 entropy	 than	 the	 true	 t-
copula	 (which	 includes	 higher	 density	 tails),	 and	 therefore	 GCMI	 will	 be	 an	
underestimate,	 with	 the	 deviation	 increasing	 with	 correlation	 strength	 and	
decreasing	with	the	t-distribution	degrees	of	freedom.		

While	 there	are	 statistical	 tests	 for	goodness-of-fit	 (GOF)	of	 specific	 copulas	
(Genest	et	al.,	2009b;	Malevergne	and	Sornette,	2003)	it	is	unclear	how	to	directly	
relate	any	copula	GOF	test	effect	size	to	the	tightness	of	the	GCMI	lower	bound.	
For	example,	with	multivariate	responses	there	could	be	a	strong	deviation	from	
the	Gaussian-copula	between	the	response	variables,	but	 in	a	way	that	does	not	
affect	 the	relationship	between	the	stimulus	and	the	multivariate	 response.	The	
rejection	of	 the	hypothesis	of	a	Gaussian	copula	does	also	not	seem	particularly	
useful,	 since	 with	 sufficient	 data	 that	 hypothesis	 could	 be	 rejected	 even	 when	
there	is	a	very	small	difference	between	the	GCMI	and	the	true	MI	estimate.		

Despite	 this,	we	 propose	 the	GCMI	 estimator	 is	 a	 useful	 practical	 tool,	 as	 a	
lower-bound	 MI	 estimate	 quantifying	 Gaussian-copula	 dependence,	 and	
particularly	 as	 an	 effect	 size	 for	 a	 flexible	 approach	 to	 permutation	 based	
statistical	 testing	 in	 a	 range	 of	 situations	 (Table	 1).	 We	 have	 shown	 that	 with	
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typical	 neuroimaging	 data	 it	 performs	 similarly	 to	 binned	 methods,	 but	 with	
generally	better	 sampling	properties.	Binned	methods	 similarly	provide	a	 lower-
bound	to	the	true	continuous	MI	(see	Figures	14A,B)	but	have	nonetheless	been	
extensively	 applied	 in	 practice	 to	 yield	 fruitful	 results	 (Section	 1).	 GCMI	 is	
computationally	much	more	efficient	than	the	nearest-neighbour	based	method,	
with	lower	variance,	and	better	sampling	bias	properties.	As	long	as	users	keep	in	
mind	they	are	measuring	only	Gaussian-copula	dependence	(as	they	are	with	most	
existing	 classical	 statistics)	 the	 GCMI	 effect	 size	 provides	 a	 useful	 estimate	 of	
mutual	 information.	 As	 demonstrated	 (Section	 4.1,4.2),	 while	 it	 may	
underestimate	 the	 true	 MI,	 it	 nonetheless	 has	 comparable	 sensitivity	 and	
specificity	 as	 conventional	 statistics	 when	 applied	 to	 mass-univariate	 (or	 mass-
multivariate)	permutation	based	inference	in	neuroimaging.		
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5. Discussion	

Information	 theory	 provides	 a	 principled	 methodology	 for	 studying	 and	
quantifying	statistical	relationships	between	variables.	As	we	have	reviewed,	the	
foundational	 quantities	 of	 information	 theory	 are	 entropy	 and	 mutual	
information.	Here	we	have	presented	a	novel	approach	to	the	practical	estimation	
of	 these	 quantities,	 combining	 the	 statistical	 theory	 of	 copulas	with	 the	 closed	
form	 solution	 for	 the	 entropy	 of	 Gaussian	 variables.	 This	 provides	 a	
computationally	efficient	and	statistically	robust	lower	bound	estimate	to	MI	with	
no	 specific	 assumptions	 on	 the	marginal	 distribution	 of	 each	 variable.	We	 have	
validated	 the	 use	 of	 this	 estimate	 as	 a	 statistical	 test	 within	 a	 neuroimaging	
context,	considering	both	discrete	and	continuous	experimental	stimuli,	and	have	
shown	 that	 with	 1D	 responses	 it	 performs	 as	 well	 as	 existing	 commonly	 used	
statistics.	 To	 accompany	 this	 article,	 we	 have	 released	 open-source	 code	
implementing	 the	 new	 methods	 for	 both	 Matlab	 and	 Python	 programming	
languages,	together	with	tutorial	examples	covering	the	analyses	presented	here.	
The	major	advantage	of	our	method	over	traditional	statistical	approaches	is	that	
it	 unifies	 a	 variety	 of	 applications	 (continuous,	 discrete	 and	 multidimensional	
variables)	in	a	framework	with	a	common	effect	size,	and	quantities	like	CMI	and	
interaction	 information	 allow	 novel	 interpretations	 that	 are	 not	 available	 with	
other	approaches.		

The	package	implementing	the	approach	in	Matlab	and	Python	is	available	at:	
https://github.com/robince/gcmi	

Code	for	all	simulations	and	figures	is	available	at:	
https://github.com/robince/sensorcop	

Application	to	multi-dimensional	spaces	

A	particular	advantage	of	the	proposed	method	 is	 the	ability	to	estimate	MI	
and	 other	 information	 theoretic	 quantities	 on	 multi-dimensional	 spaces.	 We	
suggest	 that	 there	 are	 many	 situations	 in	 neuroimaging	 where	 multivariate	
responses	 are	 interesting,	 but	 difficult	 to	 address	 with	 existing	 statistical	
methods.	 	Our	 examples	 included	 considering	 complex	MEG	 spectra	 (as	well	 as	
separating	 effects	 on	 phase	 and	 amplitude),	 2D	 planar	magnetic	 field	 gradients	
and	 considering	 raw	 signal	 values	 together	 with	 the	 instantaneous	 temporal	
derivative.	 Similarly,	 we	 could	 consider	 3D	 magnetic	 fields	 arising	 from	 MEG	
source	 localization	 techniques,	 higher	 order	 temporal	 derivatives	 or	 features	
describing	 single-trial	 ERP	 features	 (peak	 and	 latency)	 (Hu	 et	 al.,	 2010).	 The	
multivariate	 performance	 is	 also	 important	 for	 calculating	 higher	 order	
information	 theoretic	 quantities	 such	 as	 conditional	 mutual	 information	 and	
interaction	information.	This	is	challenging	with	existing	methods	due	to	the	curse	
of	 dimensionality,	 which	 either	 results	 in	 excessive	 data	 requirements	 (binned	
methods)	 or	 high	 computational	 complexity	 (continuous	 methods),	 even	 for	
modest	 numbers	 of	 dimensions	 (i.e.	 pairwise	 interaction	 information	 on	 2D	
response	variables	as	in	the	example	of	Section	4.3	requires	estimation	of	entropy	
over	a	5D	space).	While	a	more	thorough	analysis	of	the	data	requirements	of	the	
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proposed	method	is	an	important	area	for	future	work,	our	experience	to	date	is	
that	with	amounts	of	data	that	can	reasonably	be	collected	in	a	suitably	designed	
neuroimaging	 experiment	 (i.e.	 hundreds	 of	 trials)	 spaces	 of	 dimension	 5-10	 can	
reliably	 be	 addressed,	 although	 of	 course	 this	 depends	 on	 the	 strength	 of	 the	
underlying	 effects.	 For	much	 greater	 numbers	 of	 dimensions	 estimation	 of	 the	
required	 covariance	 matrices	 becomes	 problematic,	 even	 given	 the	 improved	
robustness	resulting	from	the	copula	rank	transformation.		

The	 application	 of	 regularization	 through	 Bayesian	 priors	 or	 other	 means	
(Engemann	and	Gramfort,	 2015)	might	provide	a	way	 to	extend	 the	measure	 to	
even	 higher	 dimensional	 spaces.	 Alternatively,	 we	 propose	 that	 one	 way	 to	
extend	 our	 estimator	 to	 very	 high-dimensional	 spaces	 is	 to	 combine	 it	 with	
decoding	approaches	based	on	 supervised	 learning	algorithms.	 For	example,	by	
first	 using	 a	 decoding	 algorithm	 (e.g.	 a	 linear	 discriminant)	 as	 a	 dimensionality	
reduction	step,	we	can	calculate	the	MI	of	 the	 low-dimensional	predictor	signal,	
within	a	cross-validation	framework.	We	suggest	that	MI	has	some	advantages	as	
a	statistic	to	evaluate	the	performance	of	a	decoder	(Quian	Quiroga	and	Panzeri,	
2009)	compared	to	commonly	used	measures	 (such	as	mean	performance,	area	
under	 ROC	 curve,	 etc.).	 Again	 it	 uses	 a	 common	 scale,	 provides	 the	 ability	 to	
relate	MI	 in	 different	 signals	 (e.g.	 between	EEG	 sensor	 array	 linear	 discriminant	
output	and	 single-trial	 fMRI	voxel	beta	activations,	 see	below)	and	allows	us	 to	
condition	 out	 correlated	 features.	Other	 approaches	 to	 estimating	MI	 in	 higher	
dimensional	 response	 spaces	 include	 extensions	 to	 the	 nearest-neighbour	
method	with	specifically	chosen	distance	measures	that	preserve	the	appropriate	
structure	of	the	high-dimensional	space.	For	example,	in	fMRI	a	distance	based	on	
correlation	between	 voxel	 time	 courses	 can	be	used	 to	 estimate	MI	between	 a	
statistical	parameter	map	and	a	high-dimensional	whole	brain	validation	data	set	
(Afshin-Pour	et	al.,	2011).		

Second	level	analyses	on	MI	values	

MI	provides	a	high	contrast	statistic	that	can	be	used	as	input	for	second	level	
analyses.	MI	reveals	a	functional	property	of	the	system	that	might	change	with	
different	 experimental	 conditions,	 for	 example	 with	 the	 rhythmic	 structure	 of	
speech	 stimuli	 (Kayser	et	 al.,	 2015)	or	 spatial	 attention	 (Guggenmos	et	 al.,	 2015;	
Saproo	 and	 Serences,	 2010).	 Functional	 connectivity,	 measured	 with	 directed	
information,	has	been	shown	to	be	affected	by	the	intelligibility	of	speech	(Park	et	
al.,	 2015).	 When	 considering	MI	 computed	 in	 different	 experimental	 conditions	
accurate	 bias	 correction	 is	 important	 because	 bias	 may	 not	 be	 equal	 in	 each	
condition	(for	example	due	to	differing	numbers	of	samples,	or	different	degrees	
of	signal	autocorrelation).	Mass-univariate	MI	calculations	can	also	provide	a	rich	
and	descriptive	input	for	subsequent	dimensionality	reduction.	For	example	Non-
negative	Matrix	 Factorization	 (NMF)	 (Lee	 and	 Seung,	 1999)	 is	 a	 dimensionality	
reduction	technique	that	is	well	matched	for	application	to	MI	results	(since	they	
are	 non-negative,	 and	 the	 high	 signal-to-noise	 contrast	 of	MI	 complements	 the	
mean	squared-error	objective	of	the	NMF	algorithm).	This	can	be	used	to	extract	
task	 relevant	 features	 from	 a	 high-dimensional	 naturalistic	 stimulus	 (Ince	 et	 al.,	
2015);	the	same	approach	could	also	be	applied	to	reduce	the	dimensionality	of	a	
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high-dimensional	neuroimaging	response	(e.g.	an	EEG	sensor	array)	 into	specific	
spatio-temporal	task	or	stimulus	MI	components.		

Quantifying	pairwise	interactions	

We	believe	 that	 understanding	 brain	 function	 from	 brain	 activity	 requires	 a	
focus	 on	 the	 particular	 information	 processing	 functions	 performed	 under	
different	tasks	and	conditions	(Kriegeskorte	et	al.,	2006;	Schyns	et	al.,	2009).	To	
fully	 exploit	 the	 potential	 of	 this	 information	 processing	 perspective	 requires	
methods	 that	 not	 only	 identify	 the	 systematic	modulations	 of	 brain	 responses,	
but	 the	 relationship	 between	 such	 modulations,	 or	 representations,	 across	
different	 times,	 regions	 and	 signals	 (Figure	 7A).	 The	 use	 of	 such	 approaches	
within	neuroimaging	is	growing,	with	development	and	application	of	techniques	
such	as	Representation	Similarity	Analysis	 (RSA)	 (Kriegeskorte	and	Kievit,	 2013),	
and	the	use	of	supervised	classification	algorithms	together	with	cross-validation	
(Hastie	et	al.,	2001),	often	referred	to	as	a	decoding	(Haxby	et	al.,	2014;	King	and	
Dehaene,	2014;	Quian	Quiroga	and	Panzeri,	2009).	Our	new	MI	estimator	allows	us	
to	 address	 these	 issues	 within	 the	 unified	 framework	 of	 information	 theory.	
Particular	 advantages	 include	 the	 common,	meaningful	 scale	 that	 allows	 direct	
comparison	 of	 redundancy	 with	 the	 MI	 in	 different	 signals,	 experiments,	 or	
behavior.	With	information	theory	we	can	normalize	redundancy	as	a	percentage,	
which	 provides	 a	 more	 intuitive	 measure	 for	 the	 degree	 of	 overlap	 than	 is	
available	with	other	methods,	and	we	can	perform	all	analyses	conditioning	out	
multiple	 correlated	 stimulus	 features	 if	 necessary.	 Detailed	 comparison	 of	 our	
information	theoretic	framework	with	methods	such	as	RSA	will	be	the	subject	of	
future	work.		

Our	 novel	 estimator	 can	 be	 applied	 to	 calculate	 measures	 of	 functional	
connectivity	such	as	directed	information	(transfer	entropy).	In	combination	with	
the	 information	 perspective	 described	 above,	 by	 adding	 the	 concept	 of	
redundancy	within	the	Granger	causal	framework	we	have	developed	a	measure	
of	 functional	 connectivity	 that	 quantifies	 the	 communication	 of	 specific	
information	content	(Ince	et	al.,	2015).	The	copula	MI	estimate	is	crucial	to	allow	
practical	 computation	 of	 this	 measure,	 which	 requires	 conditioning	 directed	
information	on	the	particular	stimulus	features	considered.	 	This	measure	allows	
for	 dynamic	 network	 analyses	 that	 are	 based	 not	 on	 general	 relationships	
between	areas,	but	on	communication	of	specific	information	about	the	stimulus	
or	task.		

Broader	applications	

We	have	focused	here	on	application	to	M/EEG	data,	but	we	emphasize	that	
the	copula	MI	estimator	can	be	applied	to	any	signal,	facilitating	the	comparative	
study	of	neural	information	coding	across	experimental	methodologies	and	scales	
of	brain	measurement	 (Panzeri	et	al.,	 2015).	 For	example,	 it	 could	be	applied	 to	
single	 trial	 fMRI	 GLM	 beta	 activations	 directly,	 or	 in	 combination	 with	 a	 multi-
voxel	 decoding	 approach	 as	 described	 above.	 The	 common	 scale	 allows	 direct	
comparison	of	 the	 strength	of	 the	modulation	between	different	 neuroimaging	
responses,	 and	 interaction	 information	 opens	 up	 the	 promising	 possibility	 of	
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directly	 relating	 the	 information	 content	 in	 different	 signals	 (Cichy	 et	 al.,	 2014).	
For	example,	calculating	the	redundancy	over	time	between	MI	in	a	(multivariate)	
EEG	 response	 and	 individual	 voxel	 single-trial	 beta	 activations,	 would	 allow	
mapping	the	spatial	region	that	is	redundant	with	the	EEG	at	each	time	point.		

Similarly,	 while	 we	 have	 focused	 here	 on	 neuroimaging,	 MI	 has	 broad	
applicability	 as	 a	 general	 statistical	 framework.	 It	 can	 be	 used	 for	 analyzing	
behavioral	 data,	 where	 many	 of	 the	 properties	 we	 have	 highlighted	 could	 be	
useful	 (e.g.	 CMI,	 interactions).	 It	 has	 been	used	 for	 feature	 selection	 in	 general	
classification	 problems	 (Lefakis	 and	 Fleuret,	 2014;	 Peng	 et	 al.,	 2005;	 Torkkola,	
2003)	 and	 we	 hope	 our	 estimator	 would	 also	 provide	 practical	 advantages	 in	
many	such	applications.	We	further	suggest	that	the	copula	normalization	could	
be	used	as	a	general	preprocessing	step	that	would	convert	any	covariance	based	
statistic	 or	 algorithm	 into	 a	 robust	 rank-based	 version	 (e.g.	 common	 spatial	
patterns,	canonical	correlation	analysis,	linear/quadratic	discriminant	analysis).		

Conclusion	

We	 have	 presented	 a	 novel	 approach	 to	 estimate	 MI	 and	 associated	
quantities.	 This	 provides	 a	 general,	 computationally	 efficient,	 flexible,	 robust,	
multivariate	 statistical	 framework	based	on	 information	 theory.	 This	 framework	
provides	 effect	 sizes	 on	 a	 common	 meaningful	 scale	 and	 allows	 for	 unified	
treatment	of	discrete	and	continuous	variables.	Beyond	measuring	 the	 strength	
of	direct,	possibly	multivariate,	 relationships,	quantities	 like	CMI	and	 interaction	
information	 have	 the	 potential	 to	 provide	 transformative	 interpretations	 of	
neuroimaging	data,	for	example	by	relating	information	content	in	different	brain	
responses.	 This	 framework	 allows	 investigators	 to	 take	 full	 advantage	 of	 the	
properties	of	each	neuroimaging	signal	and	their	experimental	designs	to	develop	
a	 better	 understanding	 of	 the	 information	 processing	 functions	 of	 brain	
networks.	
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