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The analysis of musical signals to extract audio descriptors that can potentially characterize their

timbre has been disparate and often too focused on a particular small set of sounds. The Timbre

Toolbox provides a comprehensive set of descriptors that can be useful in perceptual research, as

well as in music information retrieval and machine-learning approaches to content-based retrieval

in large sound databases. Sound events are first analyzed in terms of various input representations

(short-term Fourier transform, harmonic sinusoidal components, an auditory model based on the

equivalent rectangular bandwidth concept, the energy envelope). A large number of audio descrip-

tors are then derived from each of these representations to capture temporal, spectral, spectrotempo-

ral, and energetic properties of the sound events. Some descriptors are global, providing a single

value for the whole sound event, whereas others are time-varying. Robust descriptive statistics are

used to characterize the time-varying descriptors. To examine the information redundancy across

audio descriptors, correlational analysis followed by hierarchical clustering is performed. This anal-

ysis suggests ten classes of relatively independent audio descriptors, showing that the Timbre Tool-

box is a multidimensional instrument for the measurement of the acoustical structure of complex

sound signals. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3642604]

PACS number(s): 43.66.Jh, 43.75.Yy, 43.64.Bt, 43.60.Cg [DD] Pages: 2902–2916

I. INTRODUCTION

There is a growing interest within several domains of

research and technology in establishing the acoustical basis

of musical timbre perception. The term “timbre” encom-

passes a set of auditory attributes of sound events in addition

to pitch, loudness, duration, and spatial position. Psycho-

acoustic research has modeled timbre as a multidimensional

phenomenon and represents its perceptual structure in terms

of “timbre spaces.” It is important to be able to derive reli-

able acoustical parameters from the audio signal that can

serve as potential physical correlates (or audio descriptors)

of these dimensions. Composers and computer musicians

need control over these acoustical parameters for sound syn-

thesis and computer-aided orchestration. In the field of music

information retrieval, perceptually relevant timbre parame-

ters are needed as indices for content-based search of tar-

geted timbres in very large sound databases, as well as for

automatic categorization, recognition, and identification

schemes for musical instrument and environmental sounds

(McAdams, 1993). Having a systematic approach to sound

analysis that is oriented towards human perception is thus a

crucial step in applying musical acoustic research to these

problem areas. This article describes a set of audio analysis

tools that have been developed to achieve this goal, using a

number of different input representations of the audio signal

and numerous audio descriptors derived from those represen-

tations. It also conducts an analysis of the redundancy of in-

formation across the set of audio descriptors so that

researchers can systematically select independent descriptors

for their analyses. As such, the Timbre Toolbox, written in

the MATLAB programming language, aims to provide a

unique tool for the audio research and musical acoustics

communities.

One of the most fruitful approaches to timbre perception

has used multidimensional scaling analysis of dissimilarity

ratings on pairs of musical instrument sounds differing pri-

marily in their timbres (Plomp, 1970; Wedin and Goude,

1972; Wessel, 1973; Miller and Carterette, 1975; Grey,
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1977; Wessel, 1979; Krumhansl, 1989; Iverson and Krum-

hansl, 1993; McAdams et al., 1995; Kendall et al., 1999;

Lakatos, 2000; Marozeau et al., 2003). In most of these stud-

ies, qualitative interpretations of the perceptual dimensions

involved examining various acoustic representations of the

signals and using them in a descriptive fashion to “explain”

the perceptual results. Grey and Gordon (1978) were among

the first to try to establish quantitative correlations between

the position along a perceptual dimension and a value along

an acoustic dimension derived from the sound signal, spec-

tral centroid in their case. We will call such parameters

“audio descriptors.”1 Subsequent work by Iverson and

Krumhansl (1993), Krimphoff et al. (1994), McAdams et al.
(1995), and Lakatos (2000) made a more systematic attempt

at explaining all perceptual dimensions of a given timbre

space by correlating acoustic parameters with perceptual

dimensions. This approach led (1) to models of timbral dis-

tance based on audio descriptors (Misdariis et al., 1998; Pee-

ters et al., 2000), some of which were included in MPEG-7

(ISO/IEC, 2002); (2) to the development of a large set of

descriptors for use in music information retrieval and music

content analysis (Fujinaga, 1998; Martin et al., 1998; Fuji-

naga and MacMillan, 2000; Herrera et al., 2000; Rioux et
al., 2002; Peeters, 2004; Tindale et al., 2004); and (3) to con-

firmatory studies in which sounds were synthesized with spe-

cific acoustic properties to see if they could be recovered

perceptually (Caclin et al., 2005; Marozeau and de

Cheveigné, 2007). Thus the development of audio descrip-

tors has furthered research on musical timbre from several

vantage points.

Quantitative studies of musical timbre have relied on dif-

ferent methods for extracting descriptors of the sound signals.

As a result, the literature in this field lacks an exhaustive

standard for the acoustical characterization of the signals. One

of the main consequences of this fact is a decrease in the com-

parability of results from different studies. In human percep-

tion studies, for example, it is not possible to firmly conclude

whether diverging results from psychoacoustic studies of mu-

sical timbre are due to the effect of variability in the sound

stimuli or in the algorithm used to extract the audio descrip-

tors. Further, in the machine-learning literature, it is not easy

to establish whether differences across studies in classification

performance are caused by a change in the sound-descriptor

system or by differences in the mathematics of the classifica-

tion algorithms. A second consequence of the variety of

approaches to acoustical characterization is that no single

study adopts a truly exhaustive system for characterizing

acoustical signals: different studies are indeed likely to focus

on aspects of the acoustical information that seem most rele-

vant to their concerns. As a result, it is not possible to assess

whether our knowledge of the human processing of complex

sounds truly captures the entire gamut of perceptually relevant

sound parameters. Similarly, music information retrieval stud-

ies might not exploit the full information potential of the

sound signals, and hence may not attain the best possible per-

formance allowed by the chosen classification strategy.

The Timbre Toolbox implements several different classes

of audio descriptors related to the spectral, temporal, spectro-

temporal, and intensive properties of the signals. The majority

of the implemented audio descriptors have proven useful in

various timbre-related tasks, such as explaining perceptual

dimensions, performing acoustic content-based search in sound

databases, and performing automatic musical instrument classi-

fication. In this article, we use the Timbre Toolbox to analyze a

large database of musical sounds, the McGill University Master

Samples library (Opolko and Wapnick, 2006). We also assess

the informational redundancy of the Timbre Toolbox descrip-

tors within the analyzed corpus of musical signals based on

their intercorrelations. The goal of this analysis is to quantify

the similarity of the various descriptors, to estimate approxi-

mately the number of groups of statistically independent

descriptors, to assess the extent to which between-descriptor

similarities are affected by a change in two important parame-

ters of the analysis pipeline (input representation and the de-

scriptive statistic used to summarize the time-varying

descriptors over the duration of a sound event), and to provide

recommendations that future studies can follow to select among

the implemented descriptors.

II. STRUCTURE OF THE AUDIO DESCRIPTOR
ANALYSIS SYSTEM

A. Global organization

A system for the extraction of audio descriptors is usu-

ally organized according to the properties of the descriptors.

We can distinguish three main properties of an audio

descriptor: (1) the temporal extent over which the descriptor

is computed (a specific region in time, such as the sustain, or

the whole duration of a sound file), (2) the signal representa-

tion used to compute it (e.g., the waveform, the energy enve-

lope or the short-term Fourier transform), and (3) the

descriptor concept described by it (e.g., the description of

the spectral envelope or the energy envelope over time). We

discuss these three properties below.

The temporal extent denotes the segment duration over

which the descriptor is derived. A descriptor can either directly

represent the whole sound event (e.g., the Log-Attack-Time

descriptor, because there is only one attack in a sound sample)

or represent a short-duration segment inside the event (e.g., the

time-varying spectral centroid, which is derived from a spectral

analysis of consecutive short-duration segments of a sound,

usually of 60 ms duration). Descriptors of the first group are

called “global descriptors,” and those of the second group are

called “time-varying descriptors.” Time-varying descriptors are

extracted within each time frame of the sound and therefore

form a sequence of values. In order to summarize the sequence

in terms of a single value, we use descriptive statistics, such as

minimum or maximum values, the mean or median, and the

standard deviation or interquartile range (i.e., the difference

between the 75th and 25th percentiles of the sequence of

values). As such, the structure of an audio descriptor system

usually separates the extraction of global descriptors (which are

directly considered as the final results) from the extraction of

time-varying descriptors (which are subsequently processed to

derive the descriptive statistics).

Most work on audio descriptors uses similar algorithms

but with variations in the extraction process. Indeed
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descriptors such as the spectral centroid can be extracted

from various input signal representations. In our case, we

consider the following input representations: Fourier spec-

trum (magnitude and power scales), harmonic sinusoidal

components, and the output of a model of auditory process-

ing—the Equivalent Rectangular Bandwidth (ERB) model.

Such systems are thus usually organized as a set of mathe-

matical operators (e.g., the formula for spectral centroid),

which are applied to an input signal representation. To the

contrary, some descriptor concepts can only be applied to

specific signal representations. An example of this is the

inharmonicity coefficient, which can only be derived from a

harmonic signal representation.

Finally, one can attempt to distinguish descriptors

according to the concept described. For example the autocor-

relation coefficients, spectral centroid, spectral spread, spec-

tral kurtosis, spectral skewness, spectral flatness, and

spectral crest are all related to the shape of the spectrum,

although they use different signal representations for their

computation. We did not attempt to organize the descriptors

according to these shared concepts, because this is subject to

controversy: is the spectral flatness more related to an energy

description than to a harmonicity description?

Below we first explain the input representations used

and then explain the various operators applied to them to

derive the audio descriptors. In Table I, we summarize the

audio descriptors, their dimensionalities, the abbreviation we

use to refer to them in Sec. IV, and the input representation

used to compute them.

B. Input representations

The input of the audio descriptor analysis system is an

audio signal. In the following, we denote it by s(n) where n
2 Nþ is the sample number, or by s(tn) where tn¼ n/sr is the

time expressed in seconds corresponding to n and to a sam-

pling rate sr. The duration of the audio signal is denoted by

Ln when expressed in samples and by Lt when expressed in

seconds. For the extraction of the audio descriptors we con-

sidered the four following representations of the audio signal

s(tn): (1) the temporal energy envelope, (2) the short-term

Fourier transform, (3) the output of an auditory model, and

(4) sinusoidal harmonic partials.

1. Temporal Energy Envelope

The temporal envelope e(tn) of the audio signal s(tn) is

derived from the amplitude of the analytic signal sa(tn) given

by the Hilbert transform of s(tn). This amplitude signal is

then low-pass filtered using a third-order Butterworth filter

with a cutoff frequency of 5 Hz. e(tn) has the same sampling

rate and duration as that of s(tn).

2. Short-term Fourier Transform (STFT amplitude and
STFT power)

The STFT representation is obtained using a sliding-

window analysis over the audio signal s(tn). We use a

Hamming analysis window of 23.2 ms duration with a hop

size of 5.8 ms. In the following we denote the center of one

analysis window by m when expressed in samples and by tm
when expressed in seconds. The amplitude spectrum of the

STFT is then used as one of the representations in order to

derive the audio descriptors. Two types of scales are tested

for the amplitude: a linear scale (called “magnitude” here-

after) and squared amplitude (called “power” hereafter). In

the following, we denote the frequency and amplitude of the

bin k 2 Nþ obtained at frame tm by fk(tm) and ak(tm), respec-

tively. In the case of the STFT, because the hop size is equal

to 5.8 ms, the sampling rate is lower than that of the tempo-

ral envelope e(tn). It is 172.26 Hz independently of the audio

signal sampling rate.

3. Auditory model (ERB gam and ERB fft)

One can model the way sounds are analyzed in the pe-

ripheral auditory system with a bank of bandpass filters

whose bandwidths depend on the center frequency, a notion

related to the concept of “critical band” (CB), based partly

on the results of masking experiments. The Bark scale was

proposed by Zwicker (1961) to provide an estimation of the

CB. Another concept, the Equivalent Rectangular Bandwidth

(ERB) has been proposed by Moore and Glasberg (1983) for

modeling auditory filters based on more recent findings. The

ERB of a given filter is equal to the bandwidth of a perfect

rectangular filter with similar area and height. Moore and

Glasberg proposed an equation describing the value of the

ERB as a function of center frequency. Consequently, the

frequency spectrum of a sound is assumed to be partitioned

into B adjacent ERB filters used for calculating the audio

descriptors based on a peripheral auditory system representa-

tion. In the implementation used in the Timbre Toolbox, the

number of bands B depends on the sampling rate of the audio

signal: B¼ 77 for sr¼ 96 kHz, 77 for 44.1 kHz, 69 for 22

kHz, and 56 for 11 kHz. One version uses a bank of gamma-

tone filters (Patterson et al., 1992) followed by temporal

smoothing. Because of the differences in duration of the

impulse response, the total temporal smoothing depends on

frequency. The other version uses an FFT that gives an iden-

tical temporal response for all channels (which is useful for

computing the time-varying spectral descriptors, for exam-

ple). Both have approximately the same frequency resolu-

tion. As for the STFT, we used a hop size of 5.8 ms for the

computation of the ERB using FFT.

4. Sinusoidal harmonic partials (Harmonic)

An audio signal can be represented as a sum of sinusoi-

dal components (or partials) [cf. McAulay and Quatieri

(1986) or Serra and Smith (1990)] with slowly varying fre-

quency and amplitude:

sðtnÞ ’
XH

h¼1

ahðtnÞ cosð2pfhðtnÞ þ /h;0ðtnÞÞ; (1)

where ah(tn), fh(tn), and /h,0(tn) are the amplitude, frequency,

and initial phase of partial h at time tn. Given the assumption

of slowly varying amplitude and frequency, ah(tn) and fh(tn)

are lowpass signals that can therefore be estimated using
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frame analysis: ah(tm) and fh(tm). For this, we use a Black-

man window of 100 ms duration and a hop size of 25 ms. It

should be noted that this window duration is larger than that

used for the computation of the STFT. The reason for this is

to obtain a better spectral resolution (separation between ad-

jacent spectral peaks), which is required in order to be able

to describe harmonics individually and to compute the

related harmonic descriptors. In line with Krimphoff et al.
(1994) and Misdariis et al. (1998), the number of partials H
is set to 20. This value represents a trade-off, because for a

50 Hz fundamental frequency it covers the range from 20 to

1000 Hz and for a 1000 Hz signal it covers the range from

1000 to 20 000 Hz. This parameter can easily be changed in

the Timbre Toolbox.

In our system, the sinusoidal model is used for the esti-

mation of harmonic descriptors such as the tristimulus (Pol-

lard and Jansson, 1982) or the odd-to-even harmonic ratio

(Caclin et al., 2005). These descriptors require that an order

and a number be assigned to the partials (e.g., we need to

know which partials are the three first harmonics and which

are odd- or even-numbered harmonics). We thus need to

define a reference partial, as well as the relation between the

partials h and the reference partial. Because of this con-

straint, we cannot use a blind sinusoidal model such as one

that will only estimate partials using partial tracking.

We use a harmonic sinusoidal model extended to the

slightly inharmonic case (such as for piano sounds), i.e., partials

fh(tm) are considered as multiples of a fundamental frequency

f0(tm) or as an inharmonic deformation of a harmonic series.

For this, we define an inharmonicity coefficient a � 0. The

content of the spectrum is now explained by partials at frequen-

cies fh tmð Þ ¼ f0 tmð Þh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ah2
p

. In order to estimate the model,

we first estimate the fundamental frequency at each frame tm.

In the Timbre Toolbox implementation, we use the algorithm

proposed by Camacho and Harris (2008). Given that f0(tm) is an

estimate, we allow a departure from the estimated value,

denoted fh tmð Þ ¼ f0 tmð Þð þd tmð ÞÞh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ah2
p

. For a given

frame tm, we then look for the best values of d(tm) and a (a is

presumed to be constant over frames) such that the energy of

the spectrum is best explained. We therefore search for values

of d(tm) and a in order to maximize etm(d, a) defined as

etmðd; aÞ ¼
X

h

Xtm f0ðtmÞ þ dðtmÞð Þh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ah2

p� �
; (2)

where Xtm(f) is the amplitude of the DFT at frequency f and

time tm.

TABLE I. Audio descriptors, corresponding number of dimensions, unit, abbreviation used as the variable name in the MATLAB code and input signal repre-

sentation. Units symbols: -¼ no unit (when the descriptor is "normalized"); a¼ amplitude of audio signal; F¼Hz for the Harmonic, STFTmag and

STFTpower representations, and ERB-rate units for the ERBfft and ERBgam representations; I¼ a for the STFTmag representation and a2 for the STFTpow,

ERBfft and ERBgam representations.
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5. Comments on relationship between sampling rate,
pitch, and representation

It should be noted that, in our system, all window durations

and hop sizes are defined in seconds and then converted to sam-

ples according to the sampling rate of the input audio signal.

This guarantees that the same spectral resolution will be

obtained whatever the sampling rate of the signal. However,

the content of the representation itself will differ according to

the sampling rate. This is because the upper frequency of the

STFT depends on the sampling rate (it is equal to fmax¼ sr/2).

The same is true for the number of harmonic partials that one

can observe given a sampling rate or the number of ERB bands.

According to the fundamental frequency of the audio signal,

some representations may also coincide in the output. For

example, if the signal is purely harmonic (without any noise),

the STFT and sinusoidal harmonic partial representations will

give similar audio descriptors. Also for very high fundamental

frequencies, only a few partials may exist below the Nyquist

frequency, and the ERB output may be limited to a few bands.

It is also possible that too few harmonics exist to compute the

audio descriptors based on the sinusoidal harmonic model.

Therefore, when using the Timbre Toolbox, one should always

keep in mind the meaning of each representation and descriptor

when interpreting the descriptor values.

III. DEFINITION OF AUDIO DESCRIPTORS

In this section, we define the audio descriptors as

operators applied to the four representations presented

above. This formulation corresponds to the MATLAB code

provided in the Timbre Toolbox (available for download

at http://recherche.ircam.fr/pub/timbretoolbox or http://www.

cirmmt.mcgill.ca/research/tools/timbretoolbox). In Table I, we

provide the list of all audio descriptors, their respective dimen-

sionalities, the units in which they are expressed, and the

applicability of a given signal representation to compute them.

A. Temporal parameters

1. Computations on the audio signal s(tn)

The autocorrelation coefficients and zero-crossing rate

are time-varying descriptors computed directly from s(tn).

The computation is performed using a sliding-window analy-

sis with a window duration of 23.2 ms with a hop size of 2.9

ms. Its sampling rate is therefore 344.53 Hz independently

of the audio signal sampling rate.

a. Autocorrelation coefficients. The autocorrelation

coefficients (Brown, 1998) represent the spectral distribution

of the signal s(tn) in the time domain (the autocorrelation of

a signal is the inverse Fourier Transform of the spectral

energy distribution of the signal). It has been proven to pro-

vide a good description for classification (Brown et al.,
2001). From the autocorrelation, we keep only the first 12

coefficients (c 2 {1,…, 12}), expressed as

xcorrðcÞ ¼ 1

xcorrð0Þ
XLn�c�1

n¼0

sðnÞsðnþ cÞ; (3)

where Ln is the window length expressed in samples and c is

the time lag of the autocorrelation expressed in samples. It

should be noted that, by its mathematical definition, the auto-

correlation coefficients depend on the sampling rate, because

the distance between two successive n is equal to 1/sr. It is

the only descriptor of the toolbox that depends on the

sampling rate.

b. Zero-crossing rate. The zero-crossing rate is a mea-

sure of the number of times the value of the signal s(tn)

crosses the zero axis. This value tends to be small for peri-

odic sounds and large for noisy sounds. In order to compute

this descriptor, the local DC offset of each frame of the

signal is first subtracted. The zero-crossing rate value at each

frame is then normalized by the window length Lt in

seconds.

2. Energy envelope descriptors

The log-attack-time, attack-slope, decrease-slope,

temporal-centroid, effective-duration, and energy-modulation

are “global” descriptors computed using the energy envelope

e(tn). It should be noted that the log-attack-time and attack-

slope descriptors correspond closely to descriptors proposed

by Gordon (1987), Krimphoff (1993), Krimphoff et al.
(1994), and Wright (2008). In order to accurately estimate

them, one needs a robust estimation of the location of the

attack segment of a sound. Here we propose a new method to

estimate it.

a. Attack estimation. In order to estimate the start (tst)

and end (tend) times of the attack, many algorithms rely on

fixed thresholds applied to the energy envelope e(tn) of the

signal [for example defining tst as the first value for which

e(tn) goes above 10% of the maximum of e(tn) and tend as the

moment of the maximum of e(tn)]. When applied to real

sounds, this method was found not to be robust.2 In order to

address this problem, we use the “weakest-effort method”

proposed by Peeters (2004), in which the thresholds are not

fixed but are estimated according to the behavior of the sig-

nal during the attack. We first define a set of thresholds

hi¼ {0.1, 0.2, 0.3,…, 1} as a proportion of the maximum of

the energy envelope. For each threshold hi, we estimate the

time ti at which the energy envelope e(tn) reaches this thresh-

old for the first time: ti such that e(ti)¼ himax(e(tn)). We

then define “effort” as the time interval between two succes-

sive ti, so named because it represents the effort taken by the

energy to go from one threshold to the next: xi,iþ1¼ tiþ1

� ti. This is illustrated in Fig. 1. The average value of the

“efforts” x is then computed. The best threshold to be used

for the estimation of the start of the attack hst is then defined

as the first hi for which the effort xi,iþ1 goes below the value

ax with a> 1. In other words, we are looking for the first

threshold for which the corresponding effort is “weak”: it is

x2,3 in Fig. 1. In a similar way, the best threshold to be used

for the estimation of the end of the attack hend is defined as

the last hi for which the effort xi,iþ1 goes below the value

ax. It is x7,8 in Fig. 1. After experimenting on 1500 sounds

from the Ircam Studio On Line instrument database, we have
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set a¼ 3. Finally, the exact start time (tst) and end time (tend)

of the attack are estimated by taking the minimum and maxi-

mum values of e(tn) in the intervals xi,iþ1 corresponding to

hst and hend (x2,3 and x7,8 in Fig. 1).

b. Log-attack-time. The log-attack-time is simply

defined as

LAT ¼ log10ðtend � tstÞ: (4)

c. Attack slope. The attack slope is defined as the aver-

age temporal slope of the energy during the attack segment.

We compute the local slopes of the energy corresponding to

each effort wi. We then compute a weighted average of the

slopes. The weights are chosen in order to emphasize slope

values in the middle of the attack (the weights are the values

of a Gaussian function centered around threshold¼ 50% and

with a standard-deviation of 0.5).

d. Decrease slope. The temporal decrease is a mea-

sure of the rate of decrease of the signal energy. It distin-

guishes non-sustained (e.g., percussive, pizzicato) sounds

from sustained sounds. Its calculation is based on a decreas-

ing exponential model of the energy envelope starting from

its maximum (tmax):

êðtnÞ ¼ Ae�aðtn�tmaxÞtnmax; (5)

where a is estimated by linear regression on the logarithm of

the energy envelope.

e. Temporal centroid. The temporal centroid is the

center of gravity of the energy envelope. It distinguishes per-

cussive from sustained sounds. It has been proven to be a

perceptually important descriptor (Peeters et al., 2000):

tc ¼

Xn¼n2

n¼n1

tn � eðtnÞX
n

eðtnÞ
; (6)

where n1 and n2 are the first and last values of n, respec-

tively, such that e(tn) is above 15% of its maximum value.

This is used in order to avoid including silent segments in

the computation of tc.

f. Effective duration. The effective duration is a mea-

sure intended to reflect the perceived duration of the signal.

It distinguishes percussive sounds from sustained sounds but

depends on the event duration. It is approximated by the time

the energy envelope e(tn) is above a given threshold. After

many empirical tests, we have set this threshold to 40%.

g. Energy modulation (tremolo). On the sustained part

of the sound (the part used for the computation of the

decrease slope), denoted by S, we represent the modulation

of the energy over time using a sinusoidal component. We

estimate the amplitude and frequency (in Hz) of the modula-

tion. This representation corresponds roughly to a tremolo

model. For this, we first subtract from the time trajectory of

the energy e(tn 2 S), the model ê(tn 2 S) used for the compu-

tation of the decrease slope. The resulting residual signal is

then analyzed using a DFT. The maximum peak of the DFT

in the range 1 to 10 Hz is then estimated and is used as an

estimate of the modulation amplitude and frequency. If no

peak is detected, the modulation amplitude is set to 0.

B. Spectral parameters

All spectral parameters are time-varying descriptors com-

puted using either the magnitude STFT, the power STFT, the

harmonic sinusoidal partials or the ERB model output. In the

following, ak(tm) represents the value at bin k of the magnitude

STFT, the power STFT, the k¼ h sinusoidal harmonic partial

or the kth ERB filter. We denote the frequency (in Hz) corre-

sponding to k by fk. We define the normalized form of ak by

pkðtmÞ ¼ ½akðtmÞ�=
PK

k¼1 akðtmÞ. Therefore, pk(tm) represents

the normalized value of the magnitude STFT, the power STFT,

sinusoidal harmonic partial or ERB filter at bin k and time tm.

pk may be considered as the probability of observing k.

1. Frame energy

The frame energy is computed as the sum of the squared

amplitudes (ak
2) (being STFT or harmonic partials coeffi-

cients) at time tm: ET(tm)¼
P

k ak
2(tm). It should be noted

that the window used to perform the frame analysis is nor-

malized in amplitude such that its length or shape do not

influence the value obtained.

2. Statistical moments of the spectrum

The following set of audio descriptors are the first four

statistical moments of the spectrum.

Spectral centroid represents the spectral center of grav-

ity. It is defined as

l1ðtmÞ ¼
XK

k¼1

fk � pkðtmÞ: (7)

Spectral spread or spectral standard-deviation represents the

spread of the spectrum around its mean value. It is defined as

FIG. 1. Estimation of the attack segment using Peeters’ (2004) weakest-

effort method.
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l2ðtmÞ ¼
XK

k¼1

ðfk � l1ðtmÞÞ2 � pkðtmÞ
 !1=2

: (8)

Spectral skewness gives a measure of the asymmetry of the

spectrum around its mean value. l3¼ 0 indicates a symmetric

distribution, l3< 0 more energy at frequencies lower than the

mean value, and l3> 0 more energy at higher frequencies:

l3ðtmÞ ¼
XK

k¼1

ðfk � l1ðtmÞÞ3 � pkðtmÞ
 !�

l3
2: (9)

Spectral kurtosis gives a measure of the flatness of the spec-

trum around its mean value. l4¼ 3 indicates a normal (Gaus-

sian) distribution, l4< 3 a flatter distribution, and l4> 3 a

peakier distribution

l4ðtmÞ ¼
XK

k¼1

ðfk � l1ðtmÞÞ4 � pkðtmÞ
 !�

l4
2: (10)

3. Description of the slope of the spectrum

The next set of descriptors is related to the slope of the

spectrum.

Spectral slope is computed using a linear regression over

the spectral amplitude values. It should be noted that the

spectral slope is linearly dependent on the spectral centroid:

slopeðtmÞ ¼
1XK

k¼1

akðtmÞ

�
K
XK

k¼1

fkakðtmÞ �
XK

k¼1

fk �
XK

k¼1

akðtmÞ

K
XK

k¼1

f 2
k �

XK

k¼1

fk

 !2
: (11)

Spectral decrease was proposed by Krimphoff (1993) in

relation to perceptual studies. It averages the set of slopes

between frequency fk and f1. It therefore emphasizes the

slopes of the lowest frequencies:

decreaseðtmÞ ¼
1XK

k¼2

akðtmÞ

XK

k¼2

akðtmÞ � a1ðtmÞ
k � 1

: (12)

Spectral roll-off was proposed by Scheirer and Slaney

(1997). It is defined as the frequency fc(tm) below which

95% of the signal energy is contained:

XfcðtmÞ
f¼0

a2
f ðtmÞ ¼ 0:95

Xsr=2

f¼0

a2
f ðtmÞ; (13)

where sr/2 is the Nyquist frequency. In the case of harmonic

sounds, it can be shown experimentally that spectral roll-off

is related to the harmonic/noise cutoff frequency.

4. Description of the tonal/noise content of the
spectrum

Spectral-flatness measure (SFM) and spectral-crest

measures (SCM) have been proposed in the context of

speech description (Johnston, 1988) and in the context of the

MPEG-7 Audio standard (ISO/IEC, 2002). Under the

assumption that a white noise produces a flat spectrum and

that a sinusoidal component produces a peak in the spec-

trum, the measure of the flatness of the spectrum roughly

discriminates noise from harmonic content.

The spectral flatness measure is obtained by comparing

the geometrical mean and the arithmetical mean of the spec-

trum. The original formulation first split the spectrum into

various frequency bands (Johnston, 1988). However, in the

context of timbre characterization, we use a single frequency

band covering the whole frequency range. For tonal signals,

SFM is close to 0 (peaky spectrum), whereas for noisy sig-

nals it is close to 1 (flat spectrum):

SFMðtmÞ ¼

YK
k¼1

akðtmÞ
 !1=K

1

K

XK

k¼1

akðtmÞ
: (14)

In the same spirit, the spectral crest measure is obtained by

comparing the maximum value and arithmetical mean of the

spectrum:

SCMðtmÞ ¼
max

a

k
kðtmÞ

1

K

XK

k¼1

akðtmÞ
: (15)

C. Parameters specific to the harmonic analysis

The following set of parameters are also time-varying

descriptors but can only be computed using a sinusoidal har-

monic partial representation. We denote by ah(tm) and fh(tm)

the amplitude and frequency of partial h at time tm. We esti-

mate H partials ranked by increasing frequency.

1. Parameters related to the energy content

Harmonic energy is the energy of the signal explained

by the harmonic partials. It is obtained by summing the

energy of the partials detected at a specific time tm:

EHðtmÞ ¼
XH

h¼1

a2
hðtmÞ: (16)

Noise energy is the energy of the signal not explained by

harmonic partials. We approximate it by subtracting the har-

monic energy from the total energy:

ENðtmÞ ¼ ETðtmÞ � EHðtmÞ: (17)

Noisiness is the ratio of the noise energy to the total energy:

noisinessðtmÞ ¼
ENðtmÞ
ETðtmÞ

: (18)

High noisiness values indicate a signal that is mainly non-

harmonic.
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The tristimulus values were introduced by Pollard and

Jansson (1982) as a timbral equivalent to color attributes in

vision. The tristimulus comprises three different energy

ratios allowing a fine description of the first harmonics of the

spectrum:

T1ðtmÞ ¼
a1ðtmÞXH

h¼1

ahðtmÞ
;

T2ðtmÞ ¼
a2ðtmÞ þ a3ðtmÞ þ a4ðtmÞXH

h¼1

ahðtmÞ
;

T3ðtmÞ ¼

XH

h¼5

ahðtmÞ

XH

h¼1

ahðtmÞ
; (19)

where H is the total number of partials considered (by

default H¼ 20 in the Timbre Toolbox).

2. Parameters related to the frequency content

The fundamental frequency, denoted by f0(tm), can be

estimated using the algorithm of Maher and Beauchamp

(1994) or de Cheveigné and Kawahara (2002). In the Timbre

Toolbox, we use the algorithm of Camacho and Harris (2008).

Inharmonicity measures the departure of the frequencies

of the partials fh from purely harmonic frequencies hf0. It is

estimated as the weighted sum of deviation of each individ-

ual partial from harmonicity:

inharmoðtmÞ ¼
2

f0ðtmÞ

XH

h¼1

ðfhðtmÞ � hf0ðtmÞÞa2
hðtmÞ

XH

h¼1

a2
hðtmÞ

: (20)

Harmonic spectral deviation measures the deviation of the

amplitudes of the partials from a global (smoothed) spectral

envelope (Krimphoff et al., 1994):

HDEVðtmÞ ¼
1

H

XH

h¼1

ðahðtmÞ � SEðfh; tmÞÞÞ; (21)

where SE(fh, tm) denotes the value of the spectral envelope at

frequency fh and time tm. The spectral envelope at frequency

fh can be roughly estimated by averaging the values of three

adjacent partials:

SEðfh; tmÞ ¼
1

3
ðah�1ðtmÞ þ ahðtmÞ

þ ahþ1ðtmÞÞ for 1 < h < H:
(22)

The odd-to-even harmonic energy ratio distinguishes sounds

with predominant energy at odd harmonics (such as clarinet

sounds) from other sounds with smoother spectral envelopes

(such as the trumpet):

OERðtmÞ ¼

XH=2

h¼1

a2
2h�1ðtmÞ

XH=2

h¼1

a2
2hðtmÞ

: (23)

D. Spectro-temporal parameters

Spectral variation (also called spectral flux) is a time-

varying descriptor computed using either the magnitude

STFT, the power STFT, the harmonic sinusoidal partials or

the ERB model output. It represents the amount of variation

of the spectrum over time, defined as 1 minus the normalized

correlation between the successive ak (or ah in the case of

the harmonic sinusoidal model) (Krimphoff et al., 1994):

variation (tm, tm - 1 )

¼ 1�

XK

k¼1

akðtm�1ÞakðtmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1

akðtm�1Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1

akðtmÞ2
s : (24)

E. Descriptive statistics of time-varying descriptors

We denote by D(tm) the value of a specific time-varying

audio descriptor D at frame tm. In order to summarize as a

single value properties of the sequence of values D(tm), we

apply a set of descriptive statistics. Among the statistics

commonly used (minimum, maximum, mean, median, stand-

ard deviation, and interquartile range), we consider only the

median as a measure of central tendency and the interquar-

tile range as a measure of variability. Indeed, when analyz-

ing a real audio signal, part of the values of D(tm) can

potentially correspond to a silent segment in the signal. The

corresponding values, apart from being meaningless for

describing the timbre of the sound, will constitute outliers

and dramatically influence the computations of mean,

standard-deviation, min and max values. One could apply a

threshold based on the loudness level to avoid that, but this

would necessitate the definition of a threshold level, which

can be problematic in terms of generalization across sounds

and sound sets. For this reason, we employ the more robust

measures of median and interquartile range. It should be

noted that in the case in which D(tm) follows a normal distri-

bution, the median is equal to the mean and the interquartile

range is 1.349 times the standard deviation.

IV. ANALYSIS OF THE INDEPENDENCE OF AUDIO
DESCRIPTORS

One of the main aims of this article is to assess the re-

dundancy of the information quantified by each of the

descriptors in relation to the other descriptors in the Timbre

Toolbox. To this purpose, we focused on the correlations

among descriptors, where pairs of descriptors characterized

by a large absolute correlation also share a large amount of

information concerning the sound signal.
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In a first analysis, we compared the extent to which a

choice of input representation and a choice of descriptive

statistic for time-varying descriptors affects the structure of

the correlations among the audio descriptors. Part of the in-

terest in this analysis was practical. Timbre researchers may

face a choice among input representations, some of which

can be putatively better adapted to the purpose of the study

(e.g., better modeling of peripheral auditory processes) yet

more expensive from a computational point of view. Within

this context, a choice among input representations might

benefit from knowledge of the effect of a change in input

representation on the structure of the correlations among

descriptors. Indeed, if various input representations yield

highly similar structures for the between-descriptor correla-

tions, they will likely perform similarly in a variety of tasks

such as explaining the ratings of participants in a timbre per-

ception study, for example. A similar logic concerns choices

made among the descriptive statistics used to summarize

time-varying descriptors.

In a second analysis, we created two models that describe

the correlational distances among the audio descriptors imple-

mented in the Timbre Toolbox: a hierarchical clustering solu-

tion and a multidimensional scaling (MDS) representation.

These representations can provide useful constraints to

researchers faced with the problem of selecting among the

descriptors in the database. Indeed, swamping an empirical

investigation with an exceedingly high number of descriptors

can prove counterproductive if they are strongly correlated.

Although further analyses focused on the hierarchical clustering

model, the MDS representation is presented here in order to

provide a complementary visualization of the structure of the

between-descriptor correlations.

The goal of a final analysis was to estimate approximately

the number of groups of independent descriptors implemented

in the Timbre Toolbox as derived from the cluster analysis. On

the one hand, this additional analysis complements the distance

models of the between-descriptor correlations and can thus pro-

vide more specific guidelines in the process of descriptor selec-

tion. On the other hand, the number of groups of statistically

independent descriptors provides an estimate of the informa-

tional richness of the Timbre Toolbox itself with respect to one

large musical sound database.

Data-analytic procedures were designed to extract trends

that are valid across many dimensions of musical variation

(e.g., pitch, duration, dynamics). To this purpose, (1) we

adopted statistical tools that are robust, i.e., that measure trends

in the majority of the datapoints without being influenced by

outliers; (2) we focused on the most robust descriptive statistics

for the time-varying descriptors among those available in the

Timbre Toolbox, the median and interquartile range (IQR); and

(3) we analyzed a large database of highly heterogenous signals

comprising musical sounds similar to those frequently investi-

gated in past studies, as well as additional musical signals of

potential interest to future studies on musical timbre.

A. Sound samples

We analyzed a large portion of the musical signals from

the McGill University Master Samples (MUMS) database

(Opolko and Wapnick, 2006, sampling rate¼ 44.1 kHz; bit-

depth¼ 16 bit). The selection criteria focused on sounds

most commonly investigated in perceptual, music-retrieval

and machine-classification studies of musical timbre. In par-

ticular, we considered sound samples that (1) contained a

single tone of a single musical instrument, excluding chords,

ensemble sounds where different musical instruments played

tones at different pitches, glissandi, and percussion patterns

and (2) were not the product of audio effects rarely adopted

in music performance (e.g., pitch-shifted tom-tom sound).

Based on these criteria, we selected 6037 sound samples,

more than 90% of the samples in the database. The sample

set comprised multiple instruments from each of the families

of musical instruments: aerophones (wind instruments),

chordophones (string instruments), membranophones, idio-

phones, and electrophones. They included pitches from A0

to G#8 (27.5-6645 Hz; median pitch¼F4, 349.3 Hz, see Fig.

2) and several nonpitched percussive samples. The samples

also covered a large range of durations (from hundreds of

milliseconds up to 8 s ca.), as estimated from their effective

duration, and a large dynamic range (� 55 dB), as estimated

from the median of the time-varying STFTmag Frame

Energy (see Fig. 2).

The sounds are presented in a continuous fashion in the

MUMS database, and the exact onsets and offsets are not

indicated. In order to extract individual sounds for analysis,

we were therefore obliged to estimate the onsets and offsets

based on an analysis of the temporal envelope e(t). The en-

velope for each sound was derived by forward-reverse low-

pass filtering of the Hilbert transform of the waveform

(third-order Butterworth, cut-off frequency¼ 20 Hz). Note

that the extraction of e(t) as described in Sec. II B 1 uses one

simple filtering step and adopts a lower cut-off frequency (5

Hz). Here, we used a higher cut-off frequency and forward-

reverse filtering to compensate for the delays in the IIR filter

and to achieve a more accurate estimation of onset and offset

for rapidly varying signals (e.g., percussion sounds). Starting

from the peak of the temporal envelope and moving back-

wards in time, onset was defined as the temporal position of

the last e(t) sample whose level was within 35 dB of the

peak level. Starting from the peak and moving forward, off-

set was defined as the time of the first e(t) sample whose

level was lower than 35 dB relative to the peak level.

B. Intercorrelations among audio descriptors

We carried out three different analyses: (1) comparison

of the effects of the different input representations and de-

scriptive statistics of the time-varying descriptors on the cor-

relation distances among descriptors; (2) development of

distance models for the matrix of between-descriptor corre-

lations; and (3) assessment of the number of groups of inde-

pendent audio descriptors.

In the following, ad refers to the ensemble of values for

a particular audio descriptor within the analyzed database of

musical signals, and r and t refer to the input representation

and the descriptive statistic used to summarize quantitatively

a time-varying audio descriptor, respectively. For all analy-

ses, the pairwise correlational distance d(adrt, ad0r0t0) between
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descriptor adrt and ad0r0t0 was defined as D¼ 1 � jqS(adrt,

ad0r0t0)j where qS is a robust Spearman rank correlation. We

chose rank correlation over the linear Pearson correlation

because it is able to capture associations independent of

monotone transforms (e.g., the rank correlation between the

fundamental frequency and the log of the fundamental fre-

quency equals one when focusing on ranks, whereas the

Pearson correlation between the same variables is lower

than one). With all analyses, we collapsed correlation

distances across the coefficients of the multicoefficient

descriptors autocorrelation and tristimulus. To this

purpose, the collapsed absolute correlation distance D(adt,

ad0r0t0)¼Median(D(adit, ad0r0t0)) where adit¼ autocorrelation

or tristimulus, and i indexes the coefficients of adit. For anal-

ysis (1), this simplification avoided an overemphasis of the

effects of the descriptive statistics for the autocorrelation

and tristimulus descriptors. For analysis (2), this simplifica-

tion reduced the complexity of the models of the between-

descriptor distances, while still capturing the major trends in

the correlations between the autocorrelation and tristimulus

descriptors on the one hand, and the rest of the descriptors in

the Timbre Toolbox on the other.

As can be noted in Table I, several of the descriptors in

the Timbre Toolbox can be computed based on different rep-

resentations r and/or descriptive statistics t (e.g., for Spectral

Flatness r¼ {STFTmag, STFTpow, ERBfft, ERBgam, Har-

monic} and t¼ {Med, IQR}; for Noisiness r¼ {Harmonic}

and t¼ {Med, IQR}). The goal of an initial analysis was

thus to assess the extent to which choosing among

r¼ {STFTmag, STFTpow, ERBfft, ERBgam, Harmonic}

and t¼ {Med, IQR} affected the correlation distances among

all the descriptors in the Timbre Toolbox, including those

that could be extracted based on only one input representa-

tion (e.g., harmonic energy for which r¼ {Harmonic} and

t¼ {Med, IQR}, and the global descriptor attack, for which

r¼ temporal energy envelope).

To this purpose, we computed ten different matrices

D(r, t) of the correlation distances among descriptors by

combining factorially the five possible choices of r with the

two possible choices of t. In the case of the D(STFTmag,

IQR) matrix we considered the following: (1) the IQR

descriptors extracted from STFTmag but not, for example,

from STFTpow; (2) the IQR descriptors that can be extracted

from only one input representation, such as zero-crossing

rate or harmonic energy; and (3) the global descriptors

extracted from the temporal energy envelope.

The next step of this analysis was to quantify the

changes in the between-descriptor correlation distances

created by a change in r and t. To this purpose, we computed

a measure of the pairwise distance D between the ten D mat-

rices defined as D¼ 1 � qP (D(r, t), D(r0, t0)), where qP is

the robust Pearson correlation between the lower triangular

portion of the correlation matrices D(r, t) and D(r0, t0). Figure

3 shows an agglomerative hierarchical clustering model of

the distance matrix D (median linkage; cophenetic correla-

tion between D and hierarchical-clustering distance¼ 0.9). A

change in input representation r leads to changes in the

between-descriptor distances D(r, t) that are smaller than

those resulting from a change in descriptive statistic t. For

example, D(STFTmag, IQR) is more strongly correlated

with D(ERBgam, IQR) than with D(STFTmag, Med). Very

similar results, not reported here for the sake of brevity,

were obtained when qP was computed by ignoring elements

common to all the distance matrices D (e.g., all of them

FIG. 2. Distribution of three non-timbre acoustical properties in the MUMS database (F0, duration and energy), as estimated with the Timbre Toolbox.

FIG. 3. Effect of the choice of input representation and descriptive statistic

for time-varying descriptors on the correlation distance D between descrip-

tors in the Timbre Toolbox. Med¼median; iqr¼ interquartile range.
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contained the same correlations between global descriptors

derived from the temporal energy envelope), and when

defining D as the Euclidean distance between D matrices.

In a second analysis, we modeled the between-

descriptor distances D using two distance models: hierarchi-

cal clustering and metric MDS. In order to reduce the com-

plexity of the distance models, we collapsed correlation

distances across variants of the same descriptor based on the

same descriptive statistic but on different input representa-

tions, i.e., the collapsed correlation distance D0(adt,

ad0t0)¼Median(D(adrit, ad0r0jt0)) where i and j index the input

representations allowed for descriptor ad and ad0, respec-

tively, and i¼ j if both ad and ad0 can be computed using the

same set of input representations. The choice of collapsing

correlation distances across input representations was moti-

vated by the comparatively weak effects of this factor on the

correlation between audio descriptors. Figure 4 reports an

agglomerative clustering model of D (median linkage;

cophenetic correlation between input distances and

hierarchical-clustering distances¼ 0.72) and a three-

dimensional metric MDS model of the between-descriptor

distances (SAS Institute Inc., 2010, proportion of explained

variance¼ 0.78). It should be emphasized that although fur-

ther analyses focused on the hierarchical clustering model,

the MDS model is reported here for the sake of providing the

reader with a complementary and easy-to-grasp representa-

tion of the raw matrix of between-descriptor correlations.

The goal of the final analysis was to estimate approxi-

mately the number of statistically independent groups of

audio descriptors based on the hierarchical clustering model

of the between-descriptor distances (see Fig. 4). The estima-

tion process relied on the computation of four indices

describing the quality of the clustering for each of the levels

of the hierarchical model. The first clustering indices were:

the point-biserial correlation, the gamma index (Milligan,

1981), and the differential clustering height, which measures

the difference between the cophenetic distances of descrip-

tors merged into N and Nþ 1 clusters (see Fig. 5). We com-

puted one additional clustering index to compare the

stability of the main clustering solution across the following

input representations: STFTlin, STFTpow, ERBfft, ERB-

gam, and Harmonic. To this purpose, we computed five addi-

tional clustering solutions by choosing between each of the

five input representations in turn [the modeled D matrix was

computed by using the same strategy as for analysis (1), this

time considering both descriptive statistics t for the same

matrix]. For each of the possible numbers of clusters, we

used the adjusted Rand index (Hubert and Arabie, 1985) to

measure the agreement between each of the five clustering

solutions on the one hand and the main clustering solution

on the other. The adjusted Rand index takes values of zero

and one for chance-level and perfect between-partition

agreement, respectively. The bottom panel of Fig. 5 shows

the median of the adjusted Rand indices across the five

representation-specific clustering solutions. For all these

indices, high values indicate optimal clustering partitions. It

should be noted (1) that the global peak of clustering indices

often favor trivial solutions (e.g., in this case, the gamma

index appears to favor the trivial solution with one cluster

for each descriptor) and (2) that different clustering indices

might give different recommendations for an optimal

partition.

For these reasons, it is recommended to estimate the

optimal partition by inspecting the agreement between the

indications from the local peaks for the clustering indices

(Gordon, 1999). Overall, a low agreement emerged between

the various clustering indices. Nonetheless, the 10-cluster so-

lution appeared to be locally favored by three of the four

indices: point biserial correlation, differential height, and

adjusted Rand index. In the following, we take the ten-

cluster partition as a working estimate of the optimal number

of clusters of audio descriptors.

V. DISCUSSION

We analyzed the intercorrelation among audio descrip-

tors within a large database of musical instrument tones.

Several of the time-varying audio descriptors in the Timbre

Toolbox can be extracted based on different variants of a

spectrotemporal representation (STFT-mag, STFTpow,

ERBfft, and ERBgam). A first analysis thus aimed at com-

paring the extent to which the structure of the intercorrela-

tions among audio descriptors are differentially affected by a

change in basic representation, or by a change in the statisti-

cal operator adopted to summarize the time-varying audio

descriptors (median vs. interquartile range). The structure of

the intercorrelations appeared to be weakly affected by a

change in the basic input representation. For example, de-

spite the small differences between the ERBfft and ERBgam

representations, descriptors computed from the ERBfft rep-

resentation that were very strongly intercorrelated were also

strongly intercorrelated when computed from the ERBgam

representation. For this reason, we conclude that they both

give similar results and the ERBfft representation is prefera-

ble because of its greater computational efficiency and

because the temporal response of all frequency channels is

identical.

To the contrary, the change in statistical operator

adopted to summarize the time-varying descriptors appeared

to have a very strong influence on the structure of the corre-

lation between descriptors, i.e., variations in median values

across descriptors are quite different from variations in inter-

quartile range values. For this reason, it is suggested that

future studies on musical timbre take into account multiple

statistics that capture different properties of the time-varying

audio descriptors. In this analysis, we focused on two highly

robust statistics: median and interquartile range. We did so

in order to provide outlier-resistant results that would be

more likely to be replicated by independent studies. Strong

influences of a choice of the statistic on the between-

descriptor correlations are also likely when focusing on other

operators such as the mean, standard deviation or range of

variation of the time-varying audio descriptor. In summary,

the results of this analysis suggest that future studies on the

acoustical modeling of musical sounds should focus their

attention on the statistical characterization of the time-

varying audio descriptors, rather than on the fine-tuning of
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the characteristics of the spectrotemporal representations

from which the descriptors are extracted.

Subsequent analyses aimed at analyzing the structure of

the between-descriptor correlations in greater detail. Correla-

tion information was collapsed across spectrotemporal input

representations because the initial analyses suggested a weak

effect of this analysis parameter. The correlational measure

of the distance between descriptors was modeled both as a

hierarchical clustering tree and as a three-dimensional multi-

dimensional scaling space. Together, these distance models

are meant as a compact and easily understandable presenta-

tion of the structure of the raw correlation matrix and can be

used to inspect in detail the informational redundancy of the

audio descriptors implemented in the Timbre Toolbox.

A final analysis estimated the number of groups of

highly intercorrelated descriptors. The goals of this analysis

were to (1) assess whether the Timbre Toolbox is capable of

accounting for the dimensional richness of real musical

sounds, i.e., whether it is a multidimensional measurement

instrument; and (2) provide the user of the Timbre Toolbox

with a set of guidelines for selecting among the numerous

descriptors it implements. This analysis was carried out by

focusing on the hierarchical clustering model of the

correlational distance between descriptors. Based on the

inspection of various internal measures of clustering, we

estimated ten groups of descriptors that are relatively inde-

pendent from an informational point of view. As such, the

Timbre Toolbox appears to be a dimensionally rich instru-

ment for the acoustical analysis of musical sounds. Various

interesting aspects emerged from the inspection of the esti-

mated ten clusters of descriptors. Firstly, two independent

clusters emerged that overall group together spectral

FIG. 4. Structure of similarities among audio descriptors. (Left) Hierarchical cluster analysis of the correlations among audio descriptors (med¼median;

iqr¼ interquartile range). Different colors are used to highlight different clusters of descriptors. (Right) Three-dimensional metric MDS of the between-

descriptor correlations. The distance between descriptors in the MDS representation approximates a correlation distance equal to one minus the absolute corre-

lation. In order to aid the interpretation of the MDS representation in terms of correlation distances, the MDS figure is complemented with a grid arbitrarily

spaced at a correlation distance of 0.2. Within this representation, when two descriptors are separated by one grid distance their absolute correlation equals

0.8. The color codes for descriptors in the MDS representation correspond to the color codes used in the hierarchical clustering representation. See Table I for

the names of audio descriptors.
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descriptors computed using the same time-varying operator.

As such, one cluster mostly contained median descriptors for

spectral time-varying descriptors [e.g., Centroid (med) and

Kurtosis (med)], whereas another cluster included interquar-

tile range spectral descriptors [e.g., Centroid (iqr) and Kurto-

sis (iqr)]. A third large cluster included the vast majority of

the temporal descriptors (e.g., log-attack-time) and the

energetic descriptors [e.g., NoiseErg (iqr) and TotErg (iqr)].

A final large cluster included descriptors measuring mostly

signal periodicity or lack thereof (e.g., F0 and noisiness). It

is interesting to note that both the temporal/energetic cluster

and the periodicity cluster included descriptors computed by

applying the median and interquartile range statistics to the

same time-varying descriptor. As such, the correlation of

these descriptors with the other audio descriptors does not

appear to be strongly affected by the particular choice of the

statistic summarizing the time-varying descriptor, suggesting

a covariation of central tendency and variability measures

for these descriptors. The same result emerged from the two-

descriptor cluster including SpecVar (med) and SpecVar

(iqr). As we have already discussed, this was not the case for

many spectral descriptors. Very small distances can also be

observed between SpecCent/SpecSlope and SpecKurt/Spec-

Skew and /LAT, EffDur/TempCent, and HarmErg/NoiseErg/

Erg. Indeed, these are all variations of the same computa-

tional concepts. We can see that SpecVar (med and iqr) is a

specific cluster, which makes sense given that it is the only

spectro-temporal descriptor. The autocorrelation coefficients

are related to a description of the spectral shape, which

makes sense considering that xcorr is the inverse FFT of the

power spectrum. And Env(iqr) and FrameErg(iqr) are fairly

similar, because they only differ in low-pass filtering. The

position of HarmDev is difficult to explain, however. Focus-

ing on the issue of selecting among audio descriptors, the

analysis of the clustering model suggests that future studies

of musical sounds should consider at the very least: (1) one

measure of the central tendency of time-varying spectral

descriptors; (2) one measure of the temporal dispersion of

time-varying spectral descriptors; (3) one descriptor of the

energetic content of the sound signals and of the temporal

envelope of energy; (4) one descriptor of the periodicity

(e.g., F0 or noisiness). Notably, this minimum requirement

characterizes few or none of the previous studies on the

perception of musical timbre.

Focusing on the problem of estimating the number of

clusters, it is important to emphasize that the 10-cluster esti-

mates reported here should be considered as a working esti-

mate because the goal of this analysis was not to solve

exactly the problem of the optimal number of clusters.

Future users of the Timbre Toolbox are thus advised to fol-

low a method similar to that presented in this manuscript to

solve this problem for custom databases of sound signals. To

this purpose, a few methodological considerations are in

order. For a variety of reasons (e.g., stability of parameter

estimates in mathematical/statistical models), the goal of the

investigators might be to focus on descriptors of musical

timbre that are independent from the statistical point of

view. They might either pick one descriptor from each of the

clusters or reduce all the descriptors within one cluster to

one single variable (e.g., by a principal-component analysis

as in Giordano et al., 2010). Importantly, as the number of

clusters chosen by the investigator grows, descriptors

become more and more correlated with each other, i.e., the

differences between descriptors within the same cluster and

the differences between clusters of descriptors decrease. For

this reason, music-information-retrieval or machine-

classification studies of musical timbres will capitalize on

rather small differences in the information content of audio

descriptors when their estimate of the number of clusters

grows towards the number of audio descriptors. This fact is

particularly important for studies on the perception of com-

plex sounds because of the noise necessarily present in be-

havioral data (e.g., trial-to-trial stochastic variations in the

responses of experimental participants and variability among

participants). Indeed, as the estimate of the number of clus-

ters grow, the acoustical models of behavioral data will be

more and more likely to capitalize on the noise-like portions

of the variance of the behavioral data rather than on those

noise-free components that allow one to infer the architec-

ture of perceptual and cognitive processes. For these reasons,

the investigator should be particularly wary of choosing a

very large number of clusters if this means separating

moderately to highly correlated descriptors.

Finally, it is important to clarify the extent to which the

analysis results presented in this study can be generalized to

different sets of sound signals. The tested database of musi-

cal signals was highly heterogeneous: it comprised large var-

iations in pitch, dynamics, duration and a large number of

exemplars from each of the main families of Western musi-

cal instruments (e.g., idiophones, chordophones, electro-

phones). For this reason, the current analyses are likely

representative of those obtained with sets of musical sounds

FIG. 5. Clustering indices used to estimate the number of groups of inde-

pendent audio descriptors. The top three panels include point-biserial corre-

lation (PBS), gamma index and differential clustering height. The bottom

panel shows the median of the adjusted Rand index between the main clus-

tering solution and the clustering solution obtained when choosing one of

the five different input representations. Within this context, the adjusted

Rand index can be interpreted as measuring the extent to which the parti-

tioning of descriptors into clusters is affected by a change in the input repre-

sentation, where high values indicate a high stability across input

representations. For all indices, high values indicate better clustering solu-

tions. Black symbols highlight the local peaks for each of the indices.
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that comprise variations across these factors. This conclusion

is strengthened by the robust nature of the adopted statistical

framework (e.g., robust correlations, robust measures of cen-

tral tendency), which allows for inferences that are represen-

tative of the vast majority of the datapoints and are

independent of outliers. The very general approach presented

in this study is a necessary first step for characterizing the

rich acoustical structure of Western musical sounds and can

be taken as a reference against which to test in detail the

effects of various musical dimensions (e.g., pitch), the

acoustical structure of non-Western musical instruments or

the acoustical structure of the sounds from one single musi-

cal instrument.

VI. CONCLUSION

We have described a novel computational toolbox for

extracting audio descriptors of sound signals, the Timbre

Toolbox.

This toolbox extracts a large number of audio descrip-

tors previously scattered throughout the literature on speech

analysis, perception of musical timbres, sound classification

and music-information retrieval. In an attempt to systematize

the methods used for computing audio descriptors in the lit-

erature, we have proposed to organize the system as a set of

operators (e.g., the one used to compute the spectral cent-

roid) applied to a set of input signal representations (e.g., the

linear amplitude or power DFT, the amplitude of Harmonic

partials, or the outputs of ERB filters). Audio descriptors are

also organized considering the temporal extent they repre-

sent. We classed them into global and time-varying descrip-

tors. The Timbre Toolbox implements several descriptive

statistics for summarizing the information about the sound

signal contained in a time-varying descriptor with a single

number. We propose the use of the median and interquartile

range as alternatives to the mean and standard deviation

because they are not sensitive to outliers present in the time-

varying sequences of the audio features.

We used the Timbre Toolbox to analyze a large data-

base of musical sounds. The overall goal of this analysis was

to estimate the informational redundancy concerning the

sound signals across the available sound descriptors, thus

providing a useful set of audio descriptors for empirical

research. We focused on measures of between-descriptor

correlations as quantifiers of information redundancy. We

observed that the structure of the correlations among audio

descriptors is relatively robust to changes in input represen-

tation but largely affected by changes in the descriptive sta-

tistics for time-varying descriptors. From a practical point of

view, this result suggests that the researcher is relatively free

to choose among input representations based either on com-

putational considerations (e.g., whichever is less demanding)

or based on how accurately they model the transformations

of the sound signal that take place in the auditory system.

We also observed that the audio descriptors can be grouped

into ten classes that are largely independent from the

statistical point of view (between-group absolute

correlations< 0.6). Based on this result, we conclude that

the Timbre Toolbox provides informationally rich descrip-

tions of the sound signals. The largest of these groups

included (1) descriptors quantifying the central tendency of

time-varying spectral properties; (2) descriptors quantifying

the temporal variability of time-varying spectral properties;

(3) descriptors quantifying global energetic properties and

descriptors for the properties of the energy envelope; and (4)

descriptors of the periodicity of the sound signal. From a

practical point of view, these results suggest that multiple

descriptive statistics of the time-varying descriptors should

be taken into consideration because of their ability to capture

different aspects of the sound signals. Although characteriz-

ing sound signals with the highest possible number of

descriptors will surely maximize the amount of information

extracted concerning the sound signal, it is important that

researchers carry out a principled selection among descrip-

tors based on the quantification of their informational over-

lap (e.g., correlational analysis) and based on considerations

of the reliability of behavioral data in comparing the samples

of a given sound set. The same principles can guide the pro-

cess of merging informationally similar descriptors using

data-reduction techniques (e.g., Giordano et al., 2010).
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Patterson, R., Robinson, K., Holdsworth, J., McKeown, D., Zhang, C., and

Allerhand, M. (1992). “Complex sounds and auditory images,” Aud. Phys-

iol. Percept. 83, 429–446.

Peeters, G. (2004). “A large set of audio features for sound description

(similarity and classification) in the CUIDADO project,” CUIDADO IST

Project Report (IRCAM, Paris), pp. 1–25.

Peeters, G., McAdams, S., and Herrera, P. (2000). “Instrument sound

description in the context of MPEG-7,” in Proc. of Int. Computer Music
Conference, Berlin, Germany (ICMA, San Francisco).

Plomp, R. (1970). “Timbre as a multidimensional attribute of complex

tones,” in Frequency Analysis and Periodicity Detection in Hearing,

edited by R. Plomp and G. F. Smoorenburg (Sijthoff, Leiden), pp.

397–414.

Pollard, H., and Jansson, E. (1982). “A tristumulus method for the specifica-

tion of musical timbre,” Acustica 51, 162–171.

Rioux, V., McAdams, S., Susini, P., and Peeters, G. (2002). “Wp2.1.5.

psycho-acoustic timbre descriptors,” Cuidado Report (IRCAM, Paris).

SAS Institute Inc. (2010). SAS/Stat 9.22 User’s Guide (SAS Institute Inc.,

Cary, NC).

Scheirer, E., and Slaney, M. (1997). “Construction and evaluation of a robust

multifeature speech/music discriminator,” in Proc. of IEEE Int. Conference
on Acoustic Speech and Signal Processing, Munich, Germany (IEEE Com-

puter Society Press, Los Alamitos, CA), Vol. 2, pp. 1331–1334.

Serra, X., and Smith III, J. (1990). “Spectral modeling synthesis: A sound

analysis/synthesis system based on a deterministic plus stochastic decom-

position,” Comput. Music J. 14, 12–24.

Slaney, M. (1998). “Auditory Toolbox, Version 2, Technical Report No:

1998-010” (Interval Research Corporation).

Tindale, A., Kapur, A., Tzanetakis, G., and Fujinaga, I. (2004). “Retrieval of

percussion gestures using timbre classification techniques,” in Proceed-
ings of the International Symposium on Music Information Retrieval
(ISMIR 2004), Barcelona, Spain (Audiovisual Institute Pompeu Fabra Uni-

versity), pp. 541–544.

Wedin, L., and Goude, G. (1972). “Dimension analysis of the perception of

instrumental timbre,” Scand. J. Psychol. 13, 228–240.

Wessel, D. (1979). “Timbre space as a musical control structure,” Comput.

Music J. 3, 45–52.

Wessel, D. L. (1973). “Psychoacoustics and music: A report from Michigan

State University,” PACE: Bull. Comput. Arts Soc. 30, 1–2.

Wright, M. (2008). “The shape of an instant: Measuring and modeling

perceptual attack time with probability density functions,” Ph.d. thesis,

Stanford University, Palo Alto, CA.

Zwicker, E. (1961). “Subdivision of the audible frequency range into critical

bands (Frequenzgruppen),” J. Acoust. Soc. Am. 33, 248.

2916 J. Acoust. Soc. Am., Vol. 130, No. 5, November 2011 Peeters et al.: The Timbre Toolbox


	s1
	cor1
	s2
	s2A
	s2B
	s2B1
	s2B2
	s2B3
	s2B4
	E1
	E2
	T1
	s2B5
	s3
	s3A
	s3A1
	s3A1A
	E3
	s3A1B
	s3A2
	s3A2A
	s3A2B
	E4
	s3A2C
	s3A2D
	E5
	s3A2E
	E6
	s3A2F
	s3A2G
	s3B
	s3B1
	s3B2
	E7
	F1
	E8
	E9
	E10
	s3B3
	E11
	E12
	E13
	s3B4
	E14
	E15
	s3C
	s3C1
	E16
	E17
	E18
	E19
	s3C2
	E20
	E21
	E22
	E23
	s3D
	E24
	s3E
	s4
	s4A
	s4B
	F2
	F3
	s5
	F4
	F5
	s6
	fn1
	fn2
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B47
	B48
	B49
	B50

