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Identification of the material of struck objects of variable size was investigated. Previous studies on
this issue assumed recognition to be based on acoustical measures of damping. This assumption was
tested, comparing the power of a damping measure in explaining identification data with that of
several other acoustical descriptors. Listeners’ performance was perfect with respect to gross
material categories �steel-glass and wood-plexiglass� comprising materials of vastly different
mechanical properties. Impaired performance was observed for materials within the same gross
category, identification being based on the size of the objects alone. The damping descriptor
accounted for the identification of the gross categories. However other descriptors such as signal
duration explained the results equally well. Materials within the same gross category were identified
mainly on the basis of signal frequency. Overall poor support for the relevance of damping to
material perception was found. An analysis of the acoustical support for perfect material
identification was carried out. Sufficient acoustical information for perfect performance was found.
Thus, procedural biases for the origin of the effects of size could be discarded, pointing toward their
cognitive, rather than methodological nature. Identification performance was explained in terms of
the regularities of the everyday acoustical environment. © 2006 Acoustical Society of
America. �DOI: 10.1121/1.2149839�

PACS number�s�: 43.75.Cd, 43.66.Jh, 43.75.Kk �NHF� Pages: 1171–1181
I. INTRODUCTION

A growing branch of research, variously labelled eco-
logical acoustics �Vanderveer, 1979�, auditive kinetics
�Guski, 2000�, psychomechanics �McAdams, 2000�, or, gen-
erally, sound source perception, investigates the perceptual
correlates of the properties of sound sources. The object of
study in this field can be described at three different levels:
physical or mechanical �the properties of the sound source�,
acoustical �the properties of the sound wave emitted by the
source�, and perceptual �the perceived properties of the
sound event�. The research design in sound source recogni-
tion analyzes all the pairwise relationships among these lev-
els �Li, Logan, and Pastore, 1991�. In the present study this
pairwise design was applied to one of the most investigated
issues, identification of material type in impact sounds, mak-
ing it possible to provide a structured framework for the
understanding of everyday perception of this source property.

The vast majority of previous studies on material iden-
tification focused on the effects of acoustical measures of
damping. Wildes and Richards �1988� defined a shape invari-
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ant acoustical parameter for material type, the coefficient of
internal friction tan �, which models material damping,

tan� =
�

�f
, �1�

where � is the damping coefficient of the vibrational com-
ponent, i.e., the inverse of the time required for vibration
amplitude to decay to 1/e of its original amplitude, and f is
its frequency. The higher tan� the greater the damping of
the material and the faster the decay time decreases with
increasing frequency. Wildes and Richards �1988� pro-
posed material type recognition to be based on the tan �
coefficient.

The effects of damping measures on material identifica-
tion were tested in several studies using both synthetic and
real sounds. Klatzky, Pai, and Krotkov �2000� investigated
stimuli synthesized according to a physical model of a struck
bar �van den Doel and Pai, 1998�, varying a parameter re-
lated to tan� and the frequency of the lowest vibrational
mode, later referred to as frequency, which spanned over 3.3
octaves. Four response categories were used: rubber, wood,
steel, and glass. Both experimental variables affected identi-
fication: rubber and wood were chosen for higher tan� val-
ues than glass and steel; glass and wood were chosen for
higher frequencies than steel and rubber. The same task was

adopted by Avanzini and Rocchesso �2001�. Stimuli were
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generated according to the physical model of a one-mode
resonator, varying the tan� coefficient and frequency �range:
1 octave�. Results were analogous to those of Klatzky et al.
�2000�, although frequency effects were less clear. Roussarie
�1999� synthesized stimuli according to a physical model of
a struck plate �Lambourg, Chaigne and Matignon 2001�,
varying damping coefficients, elastic properties, and density
of the simulated plates around those characterizing glass and
aluminum. The properties of the simulated hammer were
also manipulated, using parameters typical of either wood or
rubber. Two response categories were adopted: glass and alu-
minum. Identification was influenced only by the damping
properties of the plates, strongly correlated with an acousti-
cal parameter analogous to tan� and with the average spec-
tral center of gravity. Variations in density and elasticity, as-
sociated with a frequency variation equivalent to a musical
interval of a perfect fifth, had no effect. In summary, all these
studies demonstrated material identification to be influenced
by damping measures, while frequency was relevant only
when ranging over at least one octave.

Other studies focused on material identification perfor-
mance. Gaver �1988� studied variable-length bars made of
iron or wood. High recognition performance was observed
and bar length had no effect. Kunkler-Peck and Turvey
�2000� investigated variously shaped plates made of steel,
wood or plexiglass. Performance was almost perfect with
only a secondary tendency to associate materials with
shapes. Perfect performance was not confirmed, however, in
a study conducted on synthetic signals �Lutfi and Oh, 1997�.
Stimuli were synthesized according to the wave equation of a
struck clamped bar, with stimulus variability created by per-
turbing the density and elasticity terms. Participants were
asked which of two stimuli was generated by striking a given
target material �iron or glass�, the alternatives being different
metals, crystal or quartz. Signal frequency was given a dis-
proportionate weight by listeners, resulting in poor perfor-
mance.

Inconsistencies between results by Kunkler-Peck and
Turvey �2000� and by Lutfi and Oh �1997� were explained by
Carello, Wagman, and Turvey �2003� in terms of the lack of
acoustical richness that might characterize synthetic signals,
and thus of the absence of sufficient information for the task.
However, additional studies also found impaired perfor-
mance with real signals. Giordano �2003� studied rectangular
steel, glass, wood, and plexiglass plates. Different stimulus
sets were generated, varying also the height/width ratio of
the plates and their area �both with freely vibrating and ex-
ternally damped plates�, as well as the material of the ham-
mer. With freely vibrating plates identification was perfect
only with respect to two gross material categories �wood-
plexiglass and glass-steel�, strong confusions being found
within the categories. Also, externally damped glass plates
were identified as made of wood or plexiglass. In any case,
consistently with results of Gaver �1988� and Kunkler-Peck
and Turvey �2000�, identification of gross categories was not
influenced by the geometrical properties of the objects. Fur-
ther, the height/width ratio and hammer material variables
had no significant effect. Results by Giordano �2003� were

confirmed by Tucker and Brown �2003� with stimuli gener-
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ated by striking variably shaped wood, plexiglass, and alu-
minum plates both in open air and underwater. Wood and
plexiglass were strongly confused with one another and were
almost perfectly discriminated from steel. A parameter re-
lated to tan� explained a large portion of the data variance
�62–69% �. In summary, Lutfi and Oh �1997�, Giordano
�2003�, and Tucker and Brown �2003� found that recognition
abilities were limited and were perfect only when involving
comparisons among materials of vastly different properties
�e.g., woods and metals�.

Kunkler-Peck and Turvey �2000� and Tucker and Brown
�2003� found the wood/plexiglass identification to be inde-
pendent of the geometrical properties of the objects. In con-
trast, Giordano �2003� found identification within both the
above-mentioned gross material categories to be based on
plate area �larger plates being more frequently identified as
made of steel or plexiglass� both with freely vibrating and
externally damped plates. These results appeared strongly
consistent across listeners, although a small percentage of
participants associated wood/plexiglass with large/small
plates. Given the influence of plate geometry on signal fre-
quency, the effects of area on identification would seem to
confirm results by Klatzky et al. �2000�. The informal nature
of the acoustical analyses presented in Giordano �2003�,
however, does not allow us to draw conclusions at this point.
Indeed participants might have based their judgment on
acoustical parameters other than frequency that are also af-
fected by size variations. Furthermore, the effects of size
observed by Giordano �2003� might have been caused by the
absence of acoustical information which reliably discrimi-
nated between materials within the gross categories. Indeed,
in the absence of such information, participants might have
been forced to focus on source properties irrelevant to the
task, namely size, for which a variation in the acoustical
features was present. However, no test for the presence of
sufficient acoustical information for perfect material identifi-
cation was carried out.

Despite all the studies focusing on this topic, little is
known about the acoustical criteria for material identifica-
tion, because acoustical modeling of behavioral data was
based on limited sets of descriptors including, at best, an
acoustical measure of damping, frequency, and the average
spectral center of gravity �SCG� �Roussarie, 1999�. Further-
more, the ascertained association of judgments with acousti-
cal measures of damping is not sufficient to conclude as to
their relevance to material identification, where judgments
might instead be based on correlated signal properties like
duration, which is expected to increase with decreasing tan�.
This hypothesis is at least in part supported by the results of
a recent study conducted on synthetic struck bar signals
�McAdams, Chaigne, and Roussarie, 2004�, based on a judg-
ment shown in other studies �see Grey, 1977; and McAdams,
1993� to be strongly related to identification. Consistently,
McAdams et al. �2004� found dissimilarity of impact sounds
to be influenced by level-decay-rate and SCG-related de-
scriptors, both covarying with a measure of the damping in
the simulated bars.

A new study on material identification was performed,

using a subset of the real signals investigated by Giordano
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�2003�. The complete research design in sound source recog-
nition was adopted �Li et al., 1991�. A wide set of descriptors
was used to characterize the information for identification
available to the perceiver, extracting the vast majority of
them from a simulation of the basic properties of the periph-
eral auditory system. For simplicity this level of character-
ization was termed “acoustical.” Both the mechanical and
acoustical determinants of experimental judgments were out-
lined. In particular, the power of several acoustical descrip-
tors in explaining material identification was compared with
that of a descriptor closely related to the tan� measure of
damping. An analysis of the relationship between the acous-
tical and physical levels allowed us to test for the presence of
sufficient acoustical information for perfect material recog-
nition and, consequently, to test for a procedural origin of the
effects of size observed by Giordano �2003�. Given the in-
terindividual differences for the wood and plexiglass recog-
nition strategies reported by Giordano �2003�, interpartici-
pant agreement was also studied.

II. METHODS

A. Stimuli

Sounds were generated striking 2-mm-thick square
plates made of four different materials: plexiglass �polym-
ethyl methacrylate�, soda-lime glass, steel, and Tanganyka
walnut. Five different values were used for the length of the
sides of the plates: 8.66, 12.24, 17.32, 24.49, and 34.64 cm,
yielding areas from 75 to 1200 cm2. Each plate was drilled
close to the right and left top corners and close to the left and
right borders, at the middle of their height �diameter, 4 mm�.
The upper holes were used to suspend the plates; the lower
ones to stabilize them after being struck, thus avoiding am-
plitude modulations due to an excessive movement of the
plate relative to the microphone. Plates were struck with a
steel pendulum �diameter, 2 cm; weight, 35.72 g�.

The apparatus used to suspend the plates was similar to
that used by Kunkler-Peck and Turvey �2000� �see Fig. 1�
and was made of pine wood. Both the plates and the pendu-
lum were hung from the top shelf with nylon lines �diameter,

FIG. 1. Sketch of the device used to suspend and strike the plates. The
pendulum and the stabilizing weights are shown in dark grey.
1 mm�. The lateral holes of the plates were attached to two
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150-g weights with nylon lines, passing through holes drilled
in two horizontal planks attached to both sides of the struc-
ture. The pendulum was hung from the top shelf, 15 cm from
the plane in which the plates lay, and was released from a
fixed guide attached to the front of the top shelf, thus keep-
ing constant the starting angle. Plates were struck in their
centers. No audible multiple impacts of the pendulum on the
plate were observed.

Sounds were generated in an acoustically isolated room
with highly absorbing walls and were recorded using a TAS-
CAM DA-P1 DAT recorder �48000-Hz sampling rate, 16
-bit resolution� and Beyer Dynamic digital microphone
�MCD101/MPD200� positioned 45 cm from the center of the
plate, opposite the struck surface. Recordings were trans-
ferred to a computer hard disk through the digital input of a
Sound Blaster Live Platinum sound card. Signals longer than
1 s were reduced to this duration by applying a 5-ms linear
decay. Informal listening tests showed that material identifi-
cation was not influenced by this sound wave editing pro-
cess. Signals were not equalized in loudness. The presenta-
tion level was the maximum level which kept the
background noise, constant across the samples, inaudible.
The peak levels of the signals ranged from 54 to 72 dB SPL.

B. Procedure

Stimuli where presented through AKG K240 head-
phones, connected to a Nikko NA-690 amplifier, which re-
ceived the output of the Sound Blaster Live soundcard of the
PC used to program the experiment. Participants sat inside a
soundproof booth. They were told that on each trial they
would be presented a single sound generated by striking an
object made of one of four different materials. In order to
make instructions straightforward, it was decided to use ge-
neric linguistic labels for all materials: glass for soda-lime
glass, metal for steel, plastic for plexiglass, and wood for
Tanganyka walnut. As the stimulus set comprised only one
material type per generic category, it was assumed that this
linguistic choice would not affect participants’ responses. No
mention was made of the geometrical properties of the ob-
jects, minimizing the non-auditory information given to par-
ticipants. After presentation of the stimulus, participants
were asked to identify the material of the struck object. Con-
fidence with the response was preferred to the control of
participants exposure to stimuli and of the response time, in
order to provide the best possible conditions for the use of
the auditory information carried by the stimuli. Thus, before
giving the response, participants were allowed to replay the
stimulus as many times as needed and were given no con-
straints on the time required to emit the response. Responses
were given by pressing appropriate keyboard keys. The 20
stimuli were presented in block-randomized order for each of
seven repetitions, for a total of 140 trials.

C. Participants

Twenty-five listeners took part in the experiment on a
voluntary basis �age: 22–49 years; 17 males, 8 females�.

Given the absence of reported effects on source perception
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performance �see McAdams, 1993, for a review of this lit-
erature�, gender was not controlled. All of the participants
reported having normal hearing.

III. ACOUSTICAL DESCRIPTORS

The analysis model used to extract the vast majority of
acoustical descriptors was meant to simulate the output of
the cochlea in response to the incoming acoustical signal.
Outer and middle ear filtering were simulated with a cascade
of two IIR and one FIR filters, in order to account for peak
sensitivity at 2 kHz and for loss of sensitivity at lower and
higher frequencies. The transfer function was derived from
measures of the minimum audible field �Killion, 1978�. Pro-
cessing of the signal inside the cochlea was simulated with a
gammatone filter bank �Patterson, Allerhand, and Giguère,
1995�, with center frequencies fc uniformly spaced on an
equal-resolution scale �Moore and Glasberg, 1983� between
30 and 16000 Hz. The power in output from the cochlear
filters was then added to the power delayed by 1/4fc �Ma-
rozeau, de Cheveigné, McAdams, and Winsberg, 2003�.

A parameter analogous to tan� was extracted from this
representation and, given the focus of the analysis model on
the properties of the peripheral auditory system, termed
tan�aud. Damping factors � for the signal output from each
channel were computed using the regression model log�P�
=a+bT, where P is power, T is time, and b=−� /2. The
regression model was applied to the signal from peak power
to a fixed threshold power. Figure 2 shows the analysis of a
harmonic complex given by the sum of six damped sinusoids
with a fundamental frequency of 2000 Hz, and with damping
factors chosen to yield a tan � �unweighted� of 0.01 �see Eq.
�1��. Also shown is the upper limit for the damping factor of
the signal in output from the cochlear channels, calculated
analyzing a unitary amplitude impulse.

Tan�aud was computed from the damping factors
weighting for the total power in output from the cochlear
filters, where the higher the output power, the higher their
perceptual relevance and thus weight in determining the

FIG. 2. Damping factors extracted from a six-component harmonic complex
with fundamental frequency of 2000 Hz and unweighted tan� of 0.01.
value of this descriptor. Thus tan�aud was defined as
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�i=1

N �i

�fci
wi

�i=1

N
wi

, �2�

where fci is the center frequency in Hertz, and wi is the sum
of power from peak value to threshold. This procedure
yielded, for the signal shown in Fig. 2, a tan�aud of 0.0101.

A second representation was used to extract loudness-
and brightness-related descriptors. The representation used to
compute the tan�aud parameter was downsampled, convolv-
ing it with a 10-ms square window, yielding a temporal reso-
lution similar to that for loudness integration �Plack and
Moore, 1990�. The power in each channel was finally raised
to the power of 0.25 to approximate partial loudness �Hart-
mann, 1997�. For each temporal frame of this representation,
loudness and brightness were defined, and computed, as the
sum of the partial loudnesses �Zwicker and Fastl, 1999� and
as the spectral center of gravity �SCG� �specific loudness
weighted average of frequency�, respectively. Finally, a du-
ration �Dur� measure was extracted, offset loudness being
that of the background noise �about 0.2 pseudosones�.

Attack and average values were extracted from the tem-
poral functions of loudness and SCG �Louatt ,SCGatt ;
Loumea,SCGmea�. For 17 of the sounds, the SCGatt measure
corresponded to the maximum SCG value, while for the re-
maining three signals, the peak was found in the third analy-
sis frame �20–30 ms from onset�. With loudness, the attack
corresponded to maximum loudness in nine signals, while
for the remaining 11 maximum loudness was found in the
second analysis frame �10–20 ms from onset�. Further de-
scriptors characterized the temporal evolution of these mea-
sures and were extracted with linear regression. For loud-
ness, Lousl1 measured the slope from the attack to the point
where loudness reached half of the attack value; Lousl2 mea-
sured the slope from the point were loudness was double the
final value up to the end. The SCG-over-time function was
nonmonotonic for 15 signals, for which an initial decrease
was followed by a final increase. Only one slope was ex-
tracted �SCGslo�, taking into account the portion from attack
to the minimum value. Figure 3 shows the loudness and SCG
functions over time for the signal generated by striking the
150-cm2 glass plate. Also shown are the linear regression
functions used to extract the slope measures.

Finally, a measure of the frequency of the lowest spec-

FIG. 3. Temporal functions of loudness and SCG for the signal generated by
striking the 150 cm2 glass plate. Also shown are the linear regression func-
tions used to extract the slope measures Lousl1 ,Lousl2 ,SCGslo.
tral component F was extracted, on the basis of the fast Fou-
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rier transform of the first 4096 samples of the signals �Han-
ning window�. F was defined as the frequency of the first
amplitude peak exceeding a fixed threshold. Amplitude
threshold was defined as the maximum amplitude of the low-
frequency background noise across the recorded samples.
Table I shows for each signal the extracted acoustical indi-
ces. Approximate density measures for the investigated ma-
terials are also given. Notably, tan�aud discriminated per-
fectly among material types, this measure increasing from
steel to glass to wood to plexiglass.

IV. RESULTS

Due to the repetitions, for each sound a distribution of
responses across the four categories was possible for each
listener. Analyses were conducted on the individual modes of
these distributions, hereafter referred to as “modal re-
sponses.”

A. From physics to perception

Response profiles of small groups of participants pre-
sented macroscopic differences with respect to data pooled
across all participants. Cluster analysis was used to extract
groups of homogeneous response profiles. Distances among
individuals were calculated using a general nominal dissimi-
larity measure, defined as the proportion of consistent cat-
egorizations among two participants �Gordon, 1999�. An ag-
glomerative hierarchical algorithm �average linkage� was
used. The final number of clusters was chosen considering a
set of statistical indices that measure the goodness-of-fit be-
tween the input data and the resulting clustering partitions
�Milligan, 1996�. A subset of the available indices was cho-
sen that demonstrates superior performance in recovering the

TABLE I. Acoustical descriptors extracted from each signal. Mat.=material;
text for an explanation of the meaning of each acoustical descriptor.

Mat.
Area
�cm2�

�
�kg/m3� tan�aud�10−3

Dur
�s�

F
�Hz�

Louatt

�p.s.�

S 75 7708.30 1.05 0.98 1535.15 7.24
S 150 7708.30 0.86 0.98 773.44 6.89
S 300 7708.30 0.90 0.98 386.72 6.17
S 600 7708.30 0.37 0.98 187.50 6.80
S 1200 7708.30 0.27 0.98 93.75 5.84
G 75 2301.70 1.52 0.52 1406.25 8.09
G 150 2301.70 4.46 0.47 750.00 7.97
G 300 2301.70 2.59 0.63 386.72 8.58
G 600 2301.70 1.68 0.98 187.50 7.06
G 1200 2301.70 2.55 0.94 105.47 6.59
W 75 718.33 19.29 0.17 527.34 5.19
W 150 718.33 22.33 0.19 257.81 4.55
W 300 718.33 19.03 0.30 128.91 4.56
W 600 718.33 19.78 0.16 58.60 4.15
W 1200 718.33 17.55 0.23 23.44 4.06
P 75 1413.30 26.09 0.10 527.34 4.78
P 150 1413.30 39.62 0.10 281.25 4.05
P 300 1413.30 41.03 0.13 140.63 3.83
P 600 1413.30 31.03 0.16 70.31 3.71
P 1200 1413.30 24.50 0.17 35.16 3.79
correct number of clusters �Milligan, 1981; Milligan and
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Cooper, 1985�: the c index �Hubert and Levin, 1976�, the
Goodman-Kruskal � �Baker and Hubert, 1972�, and the point
biserial correlation �Milligan, 1980�. For the first index,
lower scores indicate higher goodness-of-fit, and better par-
titions; for the latter two higher scores characterize better
partitions. Following the suggestions by Gordon �1999�, the
number of clusters was chosen considering local maxima/
minima of these indices across partition levels, the correct
number of clusters being characterized by the highest con-
cordance among indices. Figure 4 shows the value of the
three indices as a function of the number of clusters, along
with the local maxima/minima.

The final number of clusters was taken to be equal to
three, this partitioning level being indicated by all three in-

teel; G=glass, W=wood; P=plexiglass; �=density; p.s.=pseudo-sones. See

oumea

p.s.�
Lousl1

�p.s./s�
Lousl2

�p.s./s�
SCGatt

�ERB-rate�
SCGmea

�ERB-rate�
SCGslo

�ERB-rate/s�

.95 −138.84 −0.62 25.98 21.41 −6.00

.45 −45.61 −0.96 24.41 19.90 −5.90

.81 −25.04 −1.24 23.27 20.64 −2.85

.15 −11.96 −2.50 24.10 21.69 −2.63

.88 −4.78 −2.93 23.83 20.35 −2.97

.25 −153.39 −1.17 25.38 22.48 −7.70

.09 −175.29 −0.93 23.76 18.59 −31.70

.50 −105.47 −1.12 23.07 19.33 −5.72

.47 −42.14 −0.69 22.96 16.86 −7.26

.34 −38.41 −0.54 22.56 17.20 −5.56

.93 −175.51 −1.40 23.51 18.18 −171.61

.95 −131.95 −2.03 22.34 16.44 −102.38

.83 −121.13 −1.12 21.40 15.75 −44.01

.07 −104.69 −3.41 20.98 16.69 −52.39

.05 −64.57 −2.64 21.00 16.10 −36.04

.11 −176.74 −3.99 23.26 18.36 −153.04

.15 −127.72 −4.52 22.11 17.25 −148.12

.10 −110.59 −3.19 21.33 16.84 −114.28

.91 −99.08 −2.50 20.98 16.46 −123.87

.91 −84.09 −2.46 20.80 15.38 −85.39

FIG. 4. Statistical indices used to evaluate the number of clusters present in
S=s

L
�

0
1
1
3
3
1
1
1
1
1
0
0
0
1
1
1
1
1
0
0

the dataset across partitioning levels.
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dices. The three clusters contained 21, 3, and 1 participant�s�;
data for these groups are shown in Tables II, III, and IV,
respectively. For the first group, performance was almost
perfect with respect to the gross material categories wood-
plexiglass and steel-glass, with only one wood response be-
ing given for a glass sound. Also a strong tendency to asso-
ciate the glass and wood responses with smaller plates and
the metal and plastic responses with larger plates was found.
The same tendencies characterized the second group of par-
ticipants, the only difference being the association of the
wood and plastic responses with larger and smaller wood or
plexiglass plates, respectively. The participant in the third
cluster consistently associated metal with large wood and
plexiglass plates and did not have plastic among the modal
responses. Subsequent statistical modeling was performed on
data from the main group of participants.

The relevance of properties of the sound source to ex-
perimental judgment was first tested. Separate logistic re-
gression models �Agresti, 1996� were built for the perceptual
categorization within each of the gross material categories
�metal/glass and wood/plastic responses�. The wood modal
response observed for one of the glass plates was not in-
cluded in the analysis. Parsimonious models were sought,
following the approach suggested by Hosmer and Lemeshow
�1989�. Thus, before entering predictors into multivariate
models, the significance of their effect was tested within
univariate models. Both the material, and the area of the

TABLE II. Contingency table for the modal response in the first cluster of pa
A1–A5=75–1200 cm2. Response categories in italics.

Metal

S 1 3 17 21
G 2 2 18 21
W 0 0 0 0
P 0 0 0 0

Wood

S 0 0 0 0
G 0 1 0 0
W 19 13 10 13
P 21 21 16 6

A1 A2 A3 A4

TABLE III. Contingency table for the modal response in the second cluste
Area: A1–A5=75–1200 cm2. Response categories in italics.

Metal

S 0 3 3 3
G 0 1 2 3
W 0 0 0 0
P 0 0 0 0

Wood

S 0 0 0 0
G 0 1 0 0
W 0 1 2 3
P 0 0 0 2

A1 A2 A3 A4
1176 J. Acoust. Soc. Am., Vol. 119, No. 2, February 2006 B. L. Gio
plates, were coded as categorical variables. The models’
goodness-of-fit was evaluated with the deviance and
Hosmer-Lemeshow �Hosmer and Lemeshow, 1989� statis-
tics, nonsignificant values indicating the statistical equiva-
lence of observed and predicted data, and thus the validity of
model-based inferences. On the other hand, given the almost
perfect performance level observed, data concerning identi-
fication of the gross material categories could not be mod-
eled using logistic regression. Simple �2 association tests
were therefore adopted.

Identification of the gross material categories was influ-
enced by the material, but not by the area of the plates
��2�3�=416.038, p�0.001, �2�4�=0.038, p=1.000, respec-
tively�. Also, steel and glass plates were identified equally
often as being made of metal or glass ��2�1�=1.005, p
=0.316� and wood and plexiglass plates were identified
equally often as being made of wood or plastic ��2�1�=0,
p=1�. On the contrary, plate material did not influence sig-
nificantly the identification within the gross categories �Wald
�2�1�=0.052, p=0.820, Wald �2�1�=1.962, p=0.161, for
metal/glass and wood/plastic, respectively�, while the effect
of area was highly significant in both cases �Wald �2�4�
=47.386, p�0.001; Wald �2�4�=48.52, p�0.001, respec-
tively�. Finally, the effect of area alone accounted well for
the within-gross category identification data �metal/glass:

ants �N=21�. Material: S=Steel, G=Glass, W=Wood, P=plexiglass; Area:

Glass

20 18 4 0 0
19 18 3 0 0
0 0 0 0 0
0 0 0 0 0

Plastic

0 0 0 0 0
0 0 0 0 0
2 8 11 8 19
0 0 5 15 18

A1 A2 A3 A4 A5

articipants �N=3�. Material: S=Steel, G=Glass, W=Wood, P=plexiglass;

Glass

3 0 0 0 0
3 2 1 0 0
0 0 0 0 0
0 0 0 0 0

Plastic

0 0 0 0 0
0 0 0 0 0
3 2 1 0 1
3 3 3 1 1

A1 A2 A3 A4 A5
rticip

21
21
0
0

0
0
2
3

A5
r of p

3
3
0
0

0
0
2
2

A5
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deviance=0, p=1, Hosmer-Lemeshow �2�2�=0.009, p
=0.996; wood/plastic: deviance=0, p=1, Hosmer-
Lemeshow �2�3�=0, p=1�.

Discussion: Consistent with previous studies �Gaver,
1988; Kunkler-Peck and Turvey, 2000; Giordano, 2003;
Tucker and Brown, 2003�, nearly all individual listeners
�88%� showed perfect identification of gross material catego-
ries �steel-glass and wood-plexiglass�, independently of the
geometry of the plates. From the mechanical point of view
different material properties could explain this performance,
steel and glass being both denser and stiffer than wood and
plexiglass �see Table I and Waterman and Ashby, 1997�.

Highly impaired performance was observed for the iden-
tification of materials within the gross categories: steel was
perceptually equivalent to glass, wood to plexiglass. These
results are consistent with those of Lutfi �2001�, Giordano
�2003�, and Tucker and Brown �2003�, but not with the per-
fect wood/plexiglass identification reported by Kunkler-Peck
and Turvey �2000�. Inconsistently with data from Kunkler-
Peck and Turvey �2000� and Tucker and Brown �2003�, iden-
tification within the gross categories was influenced by the
geometry of the plates, glass, and wood being associated
with smaller plates than metal and plastic. The possible
sources for these inconsistencies are addressed in Sec. IV C.

In the Introduction, the effect of plate size on identifica-
tion reported by Giordano �2003� was hypothesized to be due
to the absence of acoustical differences between materials in
the same gross category. It must however be pointed out that
even in the absence of acoustical support for perfect recog-
nition the observed strong concordance among listeners in
associating material type with size points toward a cognitive
origin for these effects, rather than to a procedural bias. In-
deed, if these associations resulted from the tendency to fo-
cus on the only source property that carried significant
acoustical variations �allegedly size�, an equal number of
participants would have associated given material types to
opposite sizes. This was not the case in the current data.

B. From acoustics to perception

The acoustical basis for the perceptual categorization of
materials within the same gross category was investigated,
using the procedure outlined in Sec. IV A. A different ap-
proach was used for the identification of the gross categories
and is presented in section IV C.

With regression models, the transform of the predictor
affects its association with the predicted response. For each
acoustical predictor a transform was chosen among the linear
�identity transform�, logarithmic and, for F, the ERB-rate

TABLE IV. Modal response for the participant in th
P=plexiglass; Area: A1–A5=75–1200 cm2. Respon

S G M
G G W
W W W
P W W

A1 A2
transform, taking the absolute value of the slope-measures to
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evaluate the logarithmic transform. The univariate models
with the different transforms of the same predictor were then
compared on the basis of their log-likelihood. Thus, the cho-
sen transform was that yielding the univariate model with the
highest log-likelihood, i.e., the model closest to the unknown
true probability distribution from which observations were
sampled �cf. Golden, 2000�. The results of this analysis are
shown in Table V. The correlations among the acoustical
indices transformed accordingly are shown in Table VI.

Given the presence of strong correlations among predic-
tors, different regression models may, in principle, account
for the same data. For this reason, model selection proce-
dures that produce one single model in their output were not
adopted �e.g., backward elimination, forward selection�. It
was thus decided to compute all possible models, starting
from the univariate ones and progressively increase the num-
ber of predictors until at least one of the models was associ-
ated with a nonsignificant goodness-of-fit statistic.

For the metal/glass data set, F alone was sufficient to
account for the observed data �deviance�8�=7.723, p
=0.259; Hosmer-Lemeshow �2�8�=9.700, p=0.138�. The
probability of choosing the metal category increased with

rd cluster. Material: S=Steel, G=Glass, W=Wood,
tegories in italics �M =metal�.

M M M
M M M
W M M
W M M
A3 A4 A5

TABLE V. Log-likelihood �LL� of the models computed to select the trans-
form for the acoustical predictors. MG=metal/glass dataset;
WP=wood/plastic dataset. The LL of the models with the selected transform
is shown in boldface.

Data
set

Acoustical
descriptor

LL linear
model

LL logarithmic
model

LL ERB
model

MG tan�aud −135.71 −133.10
Dur −124.33 −122.66
F −57.50 −48.53 −50.25

Louatt −123.61 −122.02
Loumea −86.70 −85.29
Lousl1 −89.08 −88.37
Lousl2 −124.79 −131.52
SCGatt −87.93 −87.84
SCGmea −127.49 −127.24
SCGslo −119.08 −108.97

WP tan�aud −135.23 −135.55
Dur −126.59 −121.59
F −105.30 −101.79 −103.34

Louatt −127.87 −127.97
Loumea −130.25 −130.85
Lousl1 −103.58 −103.02
Lousl2 −134.52 −138.72
SCGatt −110.08 −109.87
SCGmea −103.86 −104.03
SCGslo −118.63 −121.96
e thi
se ca
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decreasing F. For the wood/plastic dataset, none of the
acoustical predictors alone could account sufficiently well
for observed responses. Five of the two-predictor models
were, instead, associated with nonsignificant goodness-of-fit
statistics �deviance�8�	13.533, p
0.060; Hosmer-
Lemeshow �2�8�	11.948, p
0.154�. For the first two mod-
els, the most important predictor, i.e., that associated with the
highest standardized parameter estimate, was F, the second
predictor being either Loumea or Lousl2, whereas for the other
three models, the most important predictor was Lousl1, the
least important predictor being Loumea, Lousl2, or Dur. The
probability of choosing the wood category increased with
increasing F and Loumea and with decreasing Dur, Lousl1,
and Lousl2 �i.e., with faster loudness decays�. It is worth not-
ing that the primary parameters F and Lousl1 are highly cor-
related for the wood/plastic dataset. Figure 5 shows the se-
lected regression model for the metal/glass dataset and the
F-Lousl2 model for the wood/plastic dataset.

Discussion: Consistent with the results of Klatzky et al.
�2000�, the metal/glass identification was based on signal
frequency, glass being associated with higher frequencies
than metal. As pointed out in the Introduction, the impaired
performance in the identification of hard materials reported
by Lutfi and Oh �1997� was due to an excessive weighting of
signal frequency. A similar explanation for impaired perfor-
mance might apply here. The relevance of frequency for this
categorization is, however, not consistent with results of
Roussarie �1999�. The simplest explanation for this inconsis-

TABLE VI. Correlation among acoustical predictors, transformed accordin
correlations for the wood/plastic data set, and the lower triangular matrix r
	0.05� are shown in boldface.

MG tan�aud Dur F Louatt L

tan�aud −0.692 0.219 −0.49 0
Dur −0.637 −0.461 0.086 −
F 0.315 −0.471 0.722 0

Louatt 0.693 −0.783 0.596 −
Loumea −0.804 0.416 −0.694 −0.619
Lousl1 0.81 −0.669 0.786 0.847 −
Lousl2 0.8 −0.191 0.456 0.455 −
SCGatt −0.265 −0.125 0.749 0.203 −
SCGmea −0.534 −0.081 0.487 0.022 0
SCGslo 0.792 −0.74 0.455 0.637 −

FIG. 5. Left panel: observed and predicted proportions of choosing the
response metal as a function of the F parameter. Right panel: observed and
predicted proportion of choosing the response wood as a function of the

linear predictor in the F-Lousl2 model.
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tency that emerges from a review of previous studies is based
on the range of variation of frequency within the stimulus
sets; seven semitones in Roussarie �1999�, 4.05 octaves in
the present study.

Frequency was also found to explain the wood/plastic
identification where, consistently with Klatzky et al. �2000�,
wood was associated with higher frequencies than plastic.
However, this variable alone was not sufficient to account for
the observed data, other necessary though secondary vari-
ables being either average signal loudness or Lousl2. The
same data were also explained in terms of Lousl1, strongly
correlated with F, and either duration, average loudness, or
Lousl2 as secondary variables.

Following a principle of parsimony, a common acousti-
cal explanation for both the metal/glass and wood/plastic
data was sought. It can be concluded, then, that both relied
mainly on frequency, an acoustical parameter that also ex-
plains the relevance of plate size to the judgments. Fre-
quency effects on dissimilarity rating were also reported by
McAdams et al. �2004�, although, as mentioned previously,
Roussarie �1999� found material identification to be com-
pletely independent of frequency.

Finally, these analyses demonstrate that the investigated
acoustical measure of damping, tan �aud, does not account
for several auditory material categorizations.

C. From acoustics to physics

The presence of sufficient acoustical information for
perfect material identification was ascertained. Given the al-
most perfect performance observed for the identification of
the gross material categories, this analysis is equivalent to
pointing out the possible acoustical criteria for judgment.

tan�aud was already found to discriminate perfectly
among all materials �see Sec. III�. Concluding as to the pres-
ence of sufficient information on the basis of this result
would be incautious if not incorrect, not the least because its
perceptual relevance is questioned in the current study.
Therefore this descriptor was not taken into account in the
following analyses.

Logistic regression was used to find which acoustical

the analysis summarized in Table V. The upper triangular matrix reports
s correlations for the metal/glass data set. Significant correlations �df=8, p

WP

a Lousl1 Lousl2 SCGatt SCGmea SCGslo

0.099 −0.603 −0.047 0.178 −0.476
−0.41 0.844 −0.377 −0.649 0.718
0.968 −0.092 0.917 0.802 −0.783
0.761 0.345 0.857 0.616 −0.355
0.074 −0.902 0.164 0.493 −0.239

−0.026 0.884 0.784 −0.732
0.778 −0.021 −0.357 0.27
0.322 −0.038 0.852 −0.745

−0.036 −0.45 0.764 −0.784
0.744 0.54 0.065 −0.354
g to
eport

oume

.499
0.752
.172
0.142

0.929
0.934
0.239
.213
0.685
descriptor or combination of descriptors allowed for perfect
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material identification. In analogy with the analysis of behav-
ioral data, separate analyses were performed for the identifi-
cation of the gross material categories and for identification
within the same gross category. Thus, using the descriptors
transformed as in Sec. IV B, regression models were sought
that resulted in so-called complete separation �i.e., perfect
prediction of the dependent variable, material type; Albert
and Anderson, 1984�. Models were selected starting from the
univariate cases and the number of descriptors was progres-
sively increased until at least one perfectly identifying model
was found. For each of the considered data sets, the final
models produced a threshold above and below which mate-
rials belonged to one and only one category. This threshold
was defined by a value of the acoustical descriptor in the
univariate case or, for models including two descriptors, by a
line in the plane defined by the acoustical parameters �see
Fig. 5�. Table VII reports the results of this analysis.

Steel-glass sounds were thus characterized by higher
values of Louatt, Dur, and SCGslo than those characterizing
the wood-plastic sounds. It is highly likely that at least one
of these acoustical parameters, eventually including tan�aud,
was used by participants for identification of the gross cat-
egories. Several pairs of descriptors perfectly categorized
steel and glass �11 pairs� on the one hand, and wood and
plexiglass �8 pairs� on the other. Overall, two pairs of de-
scriptors perfectly identified all material types: Dur-SCGmea

and Louatt-F. Figure 6 shows the optimal identification crite-

TABLE VII. Acoustical descriptors found to categorize perfectly the con-
trasted materials. For each acoustical descriptor the sign of the association
with the boldfaced category is also shown �e.g., the model in the bottom row
shows that wood is associated with a combination of higher Louatt and
higher SCGslo values�.

Dataset Acoustical descriptors

Steel-Glass Dur�+�
vs Louatt�+�

Wood-Plexiglass SCGslo�+�

Steel
vs

Glass

Dur�+�SCGatt�+�
Dur�+�SCGmea�+�
Dur�+�SCGslo�+�

F�+�Louatt�−�
F�+�Lousl1�+�
F�+�SCGslo�+�

Louatt�−�SCGatt�+�
Louatt�−�SCGmea�+�
Lousl1�+�SCGatt�+�
SCGatt�+�SCGslo�+�
SCGmea�+�SCGslo�+�

Wood
vs

Plexiglass

F�−�Louatt�+�
Dur�+�Louatt�+�
Dur�+�Loumea�+�
Dur�+�Lousl1�−�

Dur�+�SCGmea�+�
Louatt�+�Lousl1�+�
Louatt�+�SCGatt�−�
Louatt�+�SCGslo�+�
ria based on the Dur-SCGmea parameters. We are thus justi-
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fied in concluding on the presence of sufficient acoustical
information for perfect material identification.

Finally, it is interesting to compare the optimal use of
acoustical information with the observed behavioral criteria,
focusing, in particular, on F. While optimal criteria associ-
ated steel and plexiglass with higher frequencies, participants
used exactly the opposite weighting.

Discussion: Several acoustical parameters accounted for
the perceptual �and optimal� identification of the gross steel-
glass and wood-plexiglass material categories. Consistently
with results by Klatzky et al. �2000� and Avanzini and Roc-
chesso �2001�, tan�aud had a lower value for the steel-glass
signals. The same discrimination was also explained by Dur,
Louatt, and SCGslo. Interestingly, the last of these parameters
explained the perceptual relevance of damping in two of the
experiments reported by McAdams et al. �2004�. Given the
presence of multiple acoustical explanations, no conclusions
can be drawn on which of these parameters was actually used
by listeners. In particular, it cannot be excluded that tan�aud

was attended to by listeners. Concerning within-gross cat-
egory identification, the absence of perfect auditory perfor-
mance is in contrast with the ability of tan�aud to separate the
different materials perfectly. It is thus evident that tan�aud

was not used by participants for these categorizations. Ex-
cluding tan�aud, several pairs of other acoustical descriptors
allowed perfect within-gross category identification. Among
them three were based on the main acoustical parameter used
for perceptual categorizations: frequency. The optimal
weighting of this parameter was, however, contrary to the
observed perceptual weighting. Thus two causes for impaired
performance can be hypothesized: the wrong weighting of
signal frequency and the absence of focus on the other acous-
tical parameters necessary for perfect identification, such as
attack loudness. Discriminating between these two alterna-
tives is not possible with the available data.

The reasons for the inconsistency between the impaired
wood/plastic identification reported in this study and by
Giordano �2003� and Tucker and Brown �2003� and the per-
fect performance reported by Kunkler-Peck and Turvey
�2000� still remain unclear. It should be noted however that
Kunkler-Peck and Turvey �2000� did not use recorded sig-
nals, but generated them live, increasing the likelihood of
making additional information for the material type avail-

FIG. 6. Optimal criteria for material categorization. Dashed lines show the
equal probability boundaries �thresholds� for the optimal criteria.
able. For example, as the repetitions provided to the partici-
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pants were not acoustically identical, extraction of material-
specific invariant acoustical information might have been
favored. Also, the manipulation of the plates necessary to
hang them on the device after each trial might have gener-
ated additional acoustical signals �e.g., scraping sounds� that
were potentially informative with respect to the object’s ma-
terial. Another inconsistency with previous studies concerns
the effect of plate geometry on performance: it was second-
ary, at best, in Kunkler-Peck and Turvey �2000� or Tucker
and Brown’s �2003� data but was strong in the current data.
Plausibly, the geometrical variation of the sources in these
former studies came with less acoustical variation than in the
present study, thus facilitating a reduced focus on this source
property. Consistently, Giordano �2003� found plate area and
not shape to be perceptually relevant, the former most likely
causing stronger acoustical variations than the latter.

In summary, acoustical support for potentially perfect
performance was highlighted. Thus, the relevance of plate
area to material identification, also reported previously by
Giordano �2003�, is not a product of the absence of sufficient
information for the task. Consequently the observed biases
are likely to have a cognitive and not a methodological ori-
gin. Observed response profiles are indeed likely to reflect
the regularities of the everyday acoustical environment �cf.
Barlow, 2001�. Concerning identification of gross material
categories, available measures of the mechanical properties
of engineering materials report plastics �polymers� and
woods as strongly different from metals and glasses �Water-
man and Ashby, 1997�. Given these differences, it is highly
likely that, independently of their geometry, signals originat-
ing from wood and plastic objects would always be differen-
tiated from those originating from metal and glass objects.
Consequently, the everyday perceiver would have a rather
easy time learning to make robust identifications independent
of object geometry, as found in this study.

The ecological explanation of the biases within gross
categories is less clear. The simplest hypothesis is based on
geometry. For example, the glass impact sounds experienced
everyday are probably generated by smaller objects than is
the case with metal objects �e.g., klinking glasses vs banging
pans� and large, freely vibrating glass objects, such as the
plates of the current study, would be too fragile to be of any
plausible ordinary use. One might object that sounds gener-
ated by striking small metallic objects �coins or keys� are
also frequently experienced. These signals, however, have a
more complex nature than those investigated in the current
study, comprising multiple rather than single impacts, even-
tually interleaved with signals generated by nonimpact inter-
actions among objects �e.g., friction�. Assuming as illegiti-
mate the generalization of source recognition criteria from
one kind of object interaction to the other, the size explana-
tion for the metal/glass perceptual identification still seems
valid. However, it does not appear convincing for the wood/
plastic identification.

Given the plausible high relevance of frequency to the
wood/plastic categorization, any source property that signifi-
cantly affects this signal property might be a potential can-
didate to explain the size bias. Increasing modal frequencies

come, for example, with a decrease in size and density and
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with an increase in thickness and Young’s modulus or simply
in stiffness �cf. Fletcher and Rossing, 1991�. Therefore it
might be hypothesized that listeners learn to associate wood
with higher frequencies than plastic because the wood
sounds we experience every day are generated by thicker
objects than for plastic sounds. This hypothesis appears plau-
sible, given that thin layers should be more easily manufac-
tured with plastics than woods, but could be hardly general-
ized to the metal/glass case. Concerning Young’s modulus,
one should expect woods and glasses to be stiffer than, re-
spectively, plastics and metals. Such differences, however,
are not apparent in published measures of engineering mate-
rials �Waterman and Ashby, 1997�. Concerning density,
glasses and woods would then be expected to be less dense
than metals and plastics, respectively. Indeed, with published
measures, the average densities of these materials follow this
order �Waterman and Ashby, 1997�. The use of an identical
explanation for both the metal/glass and wood/plastic catego-
rizations makes this hypothesis particularly attractive.

V. CONCLUSIONS

Material identification from impact sounds was investi-
gated. All the pairwise relationships between source, signal
and recognized source properties were studied.

Analysis of the relations between source properties and
recognition performance highlighted perfect identification of
the gross material categories steel-glass and wood-plexiglass.
However, impaired categorization of materials within the
same gross category was observed, material identification re-
lying only on the size of the objects. A strong agreement
between individuals was also observed.

Acoustical criteria for material identification were inves-
tigated. Previous studies found identification to be influenced
by acoustical measures of damping. Therefore, a psycho-
acoustically inspired measure of damping, tan�aud, was con-
trasted with a large set of signal descriptors in its ability to
explain the behavioral data. This measure was found to ac-
count only for the identification of the gross material catego-
ries, the same data being equally well accounted for by other
signal properties: duration, attack loudness, and decay rate of
the spectral center of gravity. Identification within the gross
categories was instead found to be based mainly on signal
frequency, although the wood/plastic identification was
equally well accounted for by loudness decay descriptors
and, as secondary variables, signal duration or average loud-
ness. Thus, only partial support for the perceptual relevance
of tan�aud was found.

Analysis of the relationship between acoustical and
source properties highlighted the presence of sufficient infor-
mation for perfect material identification, pointing toward
the cognitive origin of the observed biases. Identification
data were thus interpreted with reference to the regularities
of the everyday acoustical environment.

ACKNOWLEDGMENTS

Bruno L. Giordano was supported by the European
Commission’s Future and Emergent Technologies collabora-

tive R&D program, Project No. IST-2000 25287 �Sob-

rdano and S. McAdams: Material identification of real impact sounds



The Sounding Object�, and by a Marie Curie Training Site
Fellowship hosted by KTH Music Acoustics in Stockholm,
FP5 Contract No. HPMT-CT-2000-00119. This project was
supported in part by a grant from the French Ministry of
Research’s Cognition and Information Processing Program
to Stephen McAdams. The authors wish to thank Alain de
Cheveigné for providing the code implementing the simula-
tion of the peripheral auditory system processing and for
suggestions concerning the tan�aud extraction procedure.

Agresti, A. �1996�. An Introduction to Categorical Data Analysis �Wiley,
New York�.

Albert, A., and Anderson, J. A. �1984�. “On the existence of maximum
likelihood estimates in logistic regression models,” Biometrika 71�1�,
1–10.

Avanzini, F., and Rocchesso, D. �2001�. “Controlling material properties in
physical models of sounding objects,” Proceedings of the International
Computer Music Conference 2001, La Habana, Cuba, pp. 91–94.

Baker, F. B., and Hubert, L. J. �1972�. “Measuring the power of hierarchical
cluster analysis,” J. Am. Stat. Assoc. 70, 31–38.

Barlow, H. �2001�. “The exploitation of regularities in the environment by
the brain,” Behav. Brain Sci. 24, 602–607.

Carello, C., Wagman, J. B., and Turvey, M. T. �2003�. “Acoustical specifi-
cation of object properties,” in Moving Image Theory: Ecological consid-
erations, edited by J. Anderson and B. Anderson �Southern Illinois Uni-
versity Press, Carbondale�.

Fletcher, N. H., and Rossing, T. D. �1991�. The Physics of Musical Instru-
ments �Springer-Verlag, New York�.

Gaver, W. W. �1988�. “Everyday listening and auditory icons,” Unpublished
doctoral dissertation, University of California, San Diego.

Giordano, B. L. �2003�. “Material categorization and hardness scaling in
real and synthetic impact sounds,” in The Sounding Object, edited by D.
Rocchesso and F. Fontana �Mondo Estremo, Firenze�, pp. 73–93.

Golden, R. M. �2000�. “Statistical tests for comparing possibly misspecified
and nonnested models,” J. Math. Psychol. 44, 153–170.

Gordon, A. D. �1999�. Classification �Chapman and Hall/CRC, Cleveland�.
Grey, J. M. �1977�. “Multidimensional perceptual scaling of musical tim-

bres,” J. Acoust. Soc. Am. 61�5�, 1270–1277.
Guski, R. �2000�. “Studies in auditive kinetics,” in Contributions to Psycho-

logical Acoustics. Results of the 8th Oldenburg Symposium on Psychologi-
cal Acoustics, edited by M. M. A. Schick and C. Reckhardt BIS, pp.
383–401.

Hartmann, W. M. �1997�. Signals, Sound and Sensation �AIP Press, Wood-
bury, NY�.

Hosmer, D., and Lemeshow, S. �1989�. Applied Logistic Regression �Wiley,
New York�.

Hubert, L. J., and Levin, J. R. �1976�. “A general statistical framework for
assessing categorical clustering in free recall,” Psychol. Bull. 83, 1072–
1080.

Killion, M. C. �1978�. “Revised estimate of minimum audible pressure:
Where is the ‘missing 6 dB’?,” J. Acoust. Soc. Am. 63�5�, 1501–1508.

Klatzky, R. L., Pai, D. K., and Krotkov, E. P. �2000�. “Perception of material
from contact sounds,” Presence: Teleoperators and Virtual Environment
9�4�, 399–410.

Kunkler-Peck, A. J., and Turvey, M. T. �2000�. “Hearing shape,” J. Exp.
Psychol. Hum. Percept. Perform. 26�1�, 279–294.

Lambourg, C., Chaigne, A. and Matignon, D. �2001�. “Time-domain simu-
J. Acoust. Soc. Am., Vol. 119, No. 2, February 2006 B. L. Giordano a
lation of damped impacted plates. II. Numerical model and results,” 109,
1433–1447,

Li, X., Logan, R. J., and Pastore, R. E. �1991�. “Perception of acoustic
source characteristics: Walking sounds,” J. Acoust. Soc. Am. 90�6�, 3036–
3049.

Lutfi, R. A. �2001�. “Auditory detection of hollowness,” J. Acoust. Soc. Am.
110�2�, 1010–1019.

Lutfi, R. A., and Oh, E. L. �1997�. “Auditory discrimination of material
changes in a struck-clamped bar,” J. Acoust. Soc. Am. 102�6�, 3647–
3656.

Marozeau, J., de Cheveigné, A., McAdams, S., and Winsberg, S. �2003�.
“The dependency of timbre on fundamental frequency,” J. Acoust. Soc.
Am. 114�5�, 2946–2957.

McAdams, S. �1993�. “Recognition of sound sources and events,” in Think-
ing in Sound: The Cognitive Psychology of Human Audition, edited by S.
McAdams and E. Bigand �Oxford University Press, Oxford�, pp. 146–198.

McAdams, S. �2000�. “The psychomechanics of real and simulated sound
sources,” J. Acoust. Soc. Am. 107�5�, 2792.

McAdams, S., Chaigne, A., and Roussarie, V. �2004�. “The psychomecanics
of simulated sound sources: Material properties of impacted bars,” J.
Acoust. Soc. Am. 115�3�, 1306–1320.

Milligan, G. W. �1980�. “An examination of the effect of six types of error
perturbation on fifteen clustering algorithms,” Psychometrika 45, 325–
342.

Milligan, G. W. �1981�. “A Monte Carlo study in thirty internal criterion
measures for cluster analysis,” Psychometrika 46�2�, 187–199.

Milligan, G. W. �1996�. “Clustering validation: Results and implications for
applied analyses,” in Clustering and Classification edited by P. Arabie, L.
J. Hubert, and G. De Soete �World Scientific, River Edge�, pp. 341–375.

Milligan, G. W., and Cooper, M. C. �1985�. “An examination of procedures
for determining the number of clusters in a data set,” Psychometrika
50�2�, 159–179.

Moore, B. C. J., and Glasberg, B. R. �1983�. “Suggested formulae for cal-
culating auditory-filter bandwidths and excitation patterns,” J. Acoust.
Soc. Am. 74�3�, 750–753.

Patterson, R. D., Allerhand, M., and Giguère, C. �1995�. “Time-domain
modeling of peripheral auditory processing: A modular architecture and a
software platform,” J. Acoust. Soc. Am. 98�4�, 1890–1894.

Plack, C. J., and Moore, B. C. J. �1990�. “Temporal window shape as a
function of frequency and level,” J. Acoust. Soc. Am. 87�5�, 2178–2187.

Roussarie, M. V. �1999�. “Analyse perceptive de structures vibrantes simu-
lees par modele physique,” Unpublished doctoral dissertation, Université
du Maine, France.

Tucker, S., and Brown, G. J. �2003�. “Modelling the auditory perception of
size, shape and material: Applications to the classification of transient
sonar sounds,” in Aes 2003.

van den Doel, K., and Pai, D. K. �1998�. “The sounds of physical shapes,”
Presence 7�4�, 382–395.

Vanderveer, N. J. �1979�. “Ecological acoustics: Human perception of envi-
ronmental sounds,” Unpublished doctoral dissertation, Cornell University.
�Dissertation Abstracts International 40, 4543B. �University Microfilms
No. 80-04-002�.�.

Waterman, N. A., and Ashby, M. F. �1997�. The Materials Selector, 2nd ed.
�Chapman and Hall, London�.

Wildes, R., and Richards, W. �1988�. “Recovering material properties from
sound,” in Natural computation, edited by W. Richards �MIT press, Cam-
bridge�, pp. 356–363.

Zwicker, E., and Fastl, H. �1999�. Psychoacoustics: Facts and Models, 2nd
ed. �Springer-Verlag, New York�.
nd S. McAdams: Material identification of real impact sounds 1181


