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Abstract:  

Whether the human brain represents emotional stimuli as discrete categories or continuous 

dimensions is still widely debated. Here we directly contrasted the power of categorical and 

dimensional models at explaining behavior and cerebral activity in the context of perceived 

emotion in the voice. We combined functional magnetic resonance imaging (fMRI) and 

magneto-encephalography (MEG) to measure with high spatiotemporal precision the dynamics 

of cerebral activity in participants who listened to voice stimuli expressing a range of emotions. 

The participants also provided a detailed perceptual assessment of the stimuli. By using 

representational similarity analysis (RSA), we show that the participants’ perceptual 

representation of the stimuli was initially dominated by discrete categories and an early 

(<200ms) cerebral response. These responses showed significant associations between brain 

activity and the categorical model in the auditory cortex starting as early as 77ms. Furthermore, 

we observed strong associations between the arousal and valence dimensions and activity in 

several cortical and subcortical areas at later latencies (>500ms). Our results thus show that both 

categorical and dimensional models account for patterns of cerebral responses to emotions in 

voices but with a different timeline and detail as to how these patterns evolve from discrete 

categories to progressively refined continuous dimensions. 

 

One Sentence Summary: Emotions expressed in the voice are instantly categorized in cortical 

processing and their distinct qualities are refined dimensionally only later on.  
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Main text:    

A persistent and controversial debate in affective sciences is whether emotions are better 

conceptualized as discrete categories or continuous dimensions (1, 2). Discrete emotion theories 

postulate a small number of modules, each specific to a basic emotional category such as fear or 

anger (3, 4). Dimensional theories instead argue that emotions are best described along a number 

of continuous dimensions such as valence (reflecting the degree of pleasantness ranging from 

negative to positive) or arousal (reflecting the degree of intensity ranging from calm to excited) 

(5, 6).  

Despite decades of continuous effort this fundamental question is still unresolved (7) and 

conflicting behavioral evidence continues to emerge both in intercultural and cross-cultural studies 

(8-10). Neuroimaging research on the cerebral bases of emotion, either felt or perceived, has not 

unequivocally settled this debate either (11, 12) and meta-analyses of large bodies of evidence can 

support either the notion of category-specific modules (13) or that of large-scale networks 

representing dimensional attributes (1, 14). Multi-voxel pattern analyses (MVPA) (15) have 

identified distributed patterns of cerebral activity allowing classification of felt or perceived 

emotions in others into discrete categories as well as estimation of valence and arousal dimensions 

(16-24). Yet, whether the brain represents emotional events more as discrete categories or as 

continuous dimensions remains unclear, in large part because the predictions of the two major 

theoretical positions have so far not been directly compared in a dedicated study integrating 

behavior with neuroimaging detailing how cerebral responses evolve in both space and time (8, 

17, 18). 
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Here we address this question in humans by combining comprehensive behavioral assessments 

with multimodal brain-activity measurements from the same individuals at high spatial and 

temporal resolution. We measured cerebral activity using functional magnetic resonance imaging 

(fMRI) and magneto-encephalography (MEG) while participants listened to voices that densely 

sampled a range of perceived emotion categories and dimensional attributes (Fig. 1 and 2). This 

approach allowed measuring the spatiotemporal dynamics of cerebral activity during the passive 

perception of emotional stimuli, linking these patterns to overt behavioral responses collected after 

scanning and directly comparing the predictions of discrete and continuous models. We applied a 

multivariate analysis technique called representational similarity analysis (RSA) (25) to relate the 

perceived categorical and dimensional attributes of the stimuli (categorical and dimensional 

models derived from behavioral measures) to the multivariate cerebral responses (Fig. S1). With 

this approach, we combined multiple behavioral measures with an integrated analysis of spatial 

(fMRI) and spatiotemporal (MEG) cerebral activity patterns from the same participants and 

obtained robust converging evidence for categorical and dimensional representations of perceived 

vocal emotions. 

Auditory stimuli consisted of a homogeneous set of emotionally expressive nonverbal 

vocalizations obtained by morphing between the recordings of each of two actors (one female, one 

male) portraying four different emotions — anger, fear, disgust, and pleasure — as well as a neutral 

expression (26) while briefly uttering the vowel /a/. Morphing combined pairs of emotional 

vocalizations from the same actor with weights varying in 25% steps from 0 (neutral) to 125% 

(emotional caricature) for neutral-emotion morphs and from 0 to 100% between the four expressed 

emotions (Fig. 1A), resulting in 39 stimuli per actor (Audio S1-S78). Healthy participants (n=10) 

were each scanned in alternating sessions of fMRI and MEG (four sessions each) while performing 
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a simple repetition detection task that ensured appropriate attention to the stimuli while avoiding 

an explicit focus on emotional attributes. The large amount of multimodal imaging data for each 

individual (8 sessions each for a total of 80 sessions) was key to adjudicating between overlapping 

emotion models with robust analyses. Once scanning was complete they rated the perceived 

dissimilarity of all (within-actor) pairs of stimuli in the absence of instructions that would bias the 

judgment toward a specific stimulus feature. During the last session, they evaluated the perceived 

emotional stimulus attributes by categorizing emotions and rating their valence and arousal (cf. 

Supplementary Materials and Methods).   

Analysis of behavioral results confirmed that the morphing method reliably modulated perceived 

emotion categories and dimensions (see Fig. 1B, C for perceptual effects of morphing and Fig. 2A, 

B for visualization of emotion attributes in all stimuli). We quantified the relevance to perceived 

stimulus dissimilarity (Fig 2C) of each of three emotion-attribute distances derived from the 

categorization and valence and arousal ratings (emotion representational dissimilarity matrices – 

RDMs; Fig 2A, B; correlations between emotion RDMs ≥ .19 and ≤ 0.36, standard error of the 

mean–s.e.m. ≤ 0.08, T(9) ≥ 4.07, p < 0.05 family-wise error rate – FWE corrected across 

correlations). Although larger differences in each of the emotion attributes were associated with 

an increase in perceived dissimilarity (r ≥ 0.27, s.e.m. ≤ 0.03, T(9) ≥ 8.01, p < 0.05 FWE corrected 

across emotion RDMs), only for categories and arousal such modulation was selective, i.e. was 

independent of the variance shared between all emotion attributes (semi-partial correlation – s.p.r 

≥ 0.15, s.e.m. ≤ 0.03, T(9) ≥ 8.98, p < 0.05 FWE corrected across emotion RDMs). Importantly, 

categories appeared to modulate selectively perceived dissimilarity more strongly than arousal or 

valence (unique explained variance contrast for categories vs. arousal or valence ≥ 29.07%, s.e.m. 

≤ 2.42%, T(9) ≥ 12.52; arousal vs. valence unique explained variance contrast = 7.18%, s.e.m. = 
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1.58%, T(9) = 4.66; all p < 0.05 FWE corrected across contrasts) and accounted better for 

perceptual dissimilarity than both dimensional attributes together (percent explained variance 

contrast = 12.89%, s.e.m. = 1.65%, T(9) = 10.28, p = 0.00002). Thus, the behavioral data indicate 

that both categories and dimensions influence the perception of the emotional voice stimuli but 

that categories have a stronger influence. 

Next, we asked where (cerebral location) and when (peri-stimulus latency) stimulus-evoked 

cerebral activity was significantly associated with either the categorical or the continuous emotion 

models. We first built fMRI RDMs reflecting at each cerebral location (voxel) the pairwise 

stimulus-evoked blood oxygenation level signal difference measured via fMRI, measured within 

a local sphere centered on that voxel (spatial fMRI searchlight = 6 mm radius). Each fMRI RDM 

was tested for a significant correlation with each of the three emotion-attribute RDMs (see Fig. 

2A-B correlation maps and Fig. S3 and Table S3 for additional fMRI tests). We used these results 

to spatially constraint the subsequent MEG analysis and built MEG RDMs only at those locations 

that yielded significant fMRI-emotion RDM correlations (see Fig. 3A for fMRI correlation maps). 

The MEG RDMs were derived from pairwise stimulus-evoked magnetic signal difference at the 

corresponding source-space location and each peri-stimulus time point between -147 ms and 1060 

ms after stimulus onset (spatiotemporal MEG searchlight = 10 mm radius, 53 ms duration and 40 

ms overlap between subsequent windows; cf. Supplementary Methods and Fig. S1). The encoding 

of variance shared between different emotion attributes, such as the strong valence/arousal 

correlation apparent in Fig. 2., was teased apart from the encoding of variance unique to each of 

them via semi-partial correlation tests. We then contrasted the unique RDM variance explained by 

each of the three emotion attributes and, more importantly, by categories and both dimensional 

attributes together. All encoding measures generalized across the acoustical fingerprints of the 
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male and female speakers (speaker averaged perceived emotion attributes correlated with RDMs 

cross-validated across speakers). Significance testing relied on a group-level permutation-based 

approach with cluster mass enhancement and multiple comparisons corrections across the entire 

analysis mask (FWE = 0.05) (cf. Supplementary Methods). 

Auditory cortices bilaterally showed strong selective encoding of emotion categories from early 

latencies (see Fig. 3B for statistical maps and Table S1 for statistical peaks) in both primary (local 

MEG encoding peak at 77ms) and secondary (global MEG encoding peak at 117ms) areas of the 

superior temporal gyrus (STG; selective encoding extending to 517ms). At later latencies, activity 

patterns in these areas where characterized by selective encoding of arousal (237-837ms; global 

MEG encoding peak at 717ms, Fig. 3D) and, to a lesser extent, of valence in the right insula (717-

877ms; global peak at 757 ms, Fig. 3C). Activity patterns selectively encoded categorical or 

dimensional attributes in several additional cortical and subcortical areas. The left inferior frontal 

gyrus (pars triangularis; IFGt) preferentially represented the set of stimuli in terms of discrete 

emotions from as early as 117ms after sound onset (IFGt peak at 157 ms, Fig. 3B) potentially 

reflecting implicit categorization processes based on feed-forward projections from the temporal 

cortex (27). Stimuli were represented in terms of their perceived arousal in the right amygdala (a 

subcortical structure involved in the fast detection and afferent processing of emotional signals 

(28-32)) only at relatively later latencies: starting from 237ms, (Fig. 3D), then again between 557-

597ms (arousal encoding peak) and around 757ms after a brief shift of the arousal-encoding area 

towards orbitofrontal cortex (677ms). This temporal and differential evolution of the amygdala’s 

response to arousal aligns with the structure’s afferent and efferent projections to subcortical and 

cortical brain regions (27, 33). 
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Thus, converging evidence from three modalities—behavior, fMRI, and MEG—demonstrates that 

both the categorical and dimensional models explain patterns of behavioral and cerebral response 

to emotions in the voice—but with markedly different spatio-temporal dynamics. This may explain 

why previous studies have found evidence in support of either one or the other model (13, 14, 16-

24). Our results shed significant light onto the debate by showing that categorical and dimensional 

representations unfold along different timelines in different cerebral regions, adding a much-

needed temporal dimension to the picture of cerebral processing of perceived emotion that so far 

has remained rather static. We find that the amygdala showed strong associations with the arousal 

dimension at latencies within 237-757ms. This is consistent with previous findings of selective 

impairments of arousal, but not valence recognition in amygdala lesions (34, 35) and with 

neuroimaging of healthy individuals showing representation of arousal but not valence in the 

amygdala (36). In contrast, the valence dimension was weakly associated with perceptual 

representations and was represented in the brain only at later latencies (>700ms in the insula). 

Overall, the selective encoding of dimensional attributes in the amygdala and insula is in 

agreement with the involvement of a “salience” network (11) linking the processing of emotional 

states and events across species (37, 38) and thought to represent a phylogenetic precursor for 

communicative behavior in primates and humans (20, 39, 40). In other cerebral areas, however, 

stimulus representations appeared to evolve in time from one model to the other, such as right 

auditory cortex that represents stimuli first in terms of their categorical structure at early latencies 

and then in terms of their perceived arousal at later latencies, subsequent to their initial encoding 

in subcortical structures (Fig. 3E). The representational dynamics observed for the right auditory 

cortex thus suggests a transition from an early dominance of feed-forward sensory processing to 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/265843doi: bioRxiv preprint first posted online Feb. 15, 2018; 

http://dx.doi.org/10.1101/265843
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

late attentional modulations resulting from feedback signals transmitted through lateral and medial 

cortical connections from the amygdala (39, 41).  

Finally, we perfomed a direct comparison of the categorical and continuous models by asking 

when and where patterns of neural activity reflected one theoretical account more than the other. 

For this, we initially calculated the contrast of RDM variance explained uniquely by each of the 

emotion attributes and then contrasted the explanatory power of the categorical and dimensional 

models (see Fig. 3E and S3 for contrast maps and Tables S1 and S2 for statistical peaks). The 

categorical model uniquely explained significantly more MEG RDM variance than either valence 

or arousal or both combined at early latencies (157ms) in the right auditory cortex centered on 

mid-STG (mSTG; categories vs. valence contrast significant also at 197 and 357ms). Conversely, 

the dimensional model uniquely explained significantly more MEG RDM variance at later 

latencies (717-757 ms) in a similar area of the right auditory cortex (arousal vs. categories contrast 

significant at 717ms; arousal vs. valence contrast significant at 637-677 ms).  

In summary, by enabling a direct contrast of the predictions of the two models, our results provide 

crucial insight into the category vs. dimension debate. Statistical comparison of the predictions of 

the two models yielded unequivocal evidence for a clear prevalence of the categorical model: the 

perceptual structure of the stimuli was more related to categories than dimensions and 

spatiotemporal activity patterns in widespread areas of the auditory cortices were associated from 

early latencies on (as early as 77ms post-onset) with the categorical stimulus structure. The contrast 

of variance uniquely explained by categories and dimensions was significant in the right auditory 

cortex around 157ms after stimulus onset. However, dimensional representations become more 

prevalent at later latencies in the auditory cortex, subcortical areas, and orbitofrontal cortex, 

suggesting progressive refinement of emotional stimulus representations from formation of main 
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emotional categories well suited to trigger fast adaptive reactions to increasingly fined-grained 

representations modulated by valence and arousal.  Overall, our results provide a comprehensive 

characterization of the spatiotemporal dynamics of perceived emotion processing by the brain and 

demonstrate how both categories and dimensions are interwoven into rich and complex 

representations initially dominated by categories then progressively refined into dimensions. 

 

References and Notes: 

1. K. A. Lindquist, T. D. Wager, H. Kober, E. Bliss-Moreau, L. F. Barrett, The brain basis 
of emotion: a meta-analytic review. Behav Brain Sci 35, 121-143  

2. S. Hamann, Mapping discrete and dimensional emotions onto the brain: controversies 
and consensus. Trends Cogn Sci 16, 458-466 (2012 

3. P. Ekman, in The Science of Facial Expression, J. M. Fernandez-Dols, J. A. Russell, Eds. 
(Oxford University Press, 2017), pp. 39-56. 

4. J. Panksepp, Neurologizing the Psychology of Affects: How Appraisal-Based 
Constructivism and Basic Emotion Theory Can Coexist. Perspect Psychol Sci 2, 281-296 
(2007). 

5. J. A. Russell, L. F. Barrett, Core affect, prototypical emotional episodes, and other things 
called emotion: dissecting the elephant. J Pers Soc Psychol 76, 805-819 (1999);  

6. L. F. Barrett, B. Mesquita, K. N. Ochsner, J. J. Gross, The experience of emotion. Annu 
Rev Psychol 58, 373-403 (2007)10.1146/annurev.psych.58.110405.085709). 

7. P. Ekman, What Scientists Who Study Emotion Agree About. Perspect Psychol Sci 11, 
31-34 (2016). 

8. A. S. Cowen, D. Keltner, Self-report captures 27 distinct categories of emotion bridged 
by continuous gradients. Proc Natl Acad Sci U S A 114, E7900-E7909 (2017). 

9. M. Gendron, D. Roberson, J. M. van der Vyver, L. F. Barrett, Cultural relativity in 
perceiving emotion from vocalizations. Psychol Sci 25, 911-920 (2014). 

10. D. A. Sauter, F. Eisner, P. Ekman, S. K. Scott, Cross-cultural recognition of basic 
emotions through nonverbal emotional vocalizations. Proc Natl Acad Sci U S A 107, 
2408-2412 (2010). 

11. L. F. Barrett, A. B. Satpute, Large-scale brain networks in affective and social 
neuroscience: towards an integrative functional architecture of the brain. Curr Opin 
Neurobiol 23, 361-372 (2013). 

12. S. Hamann, What can neuroimaging meta-analyses really tell us about the nature of 
emotion? Behav Brain Sci 35, 150-152 (2012). 

13. K. Vytal, S. Hamann, Neuroimaging support for discrete neural correlates of basic 
emotions: a voxel-based meta-analysis. J Cogn Neurosci 22, 2864-2885 (2010). 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/265843doi: bioRxiv preprint first posted online Feb. 15, 2018; 

http://dx.doi.org/10.1101/265843
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

14. H. Kober, L. F. Barrett, J. Joseph, E. Bliss-Moreau, K. Lindquist, T. D. Wager, 
Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of 
neuroimaging studies. Neuroimage 42, 998-1031 (2008). 

15. J. V. Haxby, A. C. Connolly, J. S. Guntupalli, Decoding neural representational spaces 
using multivariate pattern analysis. Annu Rev Neurosci 37, 435-456 (2014). 

16. H. Saarimaki, A. Gotsopoulos, I. P. Jaaskelainen, J. Lampinen, P. Vuilleumier, R. Hari, 
M. Sams, L. Nummenmaa, Discrete Neural Signatures of Basic Emotions. Cereb Cortex 
26, 2563-2573 (2016). 

17. P. A. Kragel, K. S. LaBar, Multivariate neural biomarkers of emotional states are 
categorically distinct. Soc Cogn Affect Neurosci 10, 1437-1448 (2015). 

18. A. E. Skerry, R. Saxe, Neural representations of emotion are organized around abstract 
event features. Curr Biol 25, 1945-1954 (2015). 

19. J. Chikazoe, D. H. Lee, N. Kriegeskorte, A. K. Anderson, Population coding of affect 
across stimuli, modalities and individuals. Nat Neurosci 17, 1114-1122 (2014). 

20. S. A. Kotz, C. Kalberlah, J. Bahlmann, A. D. Friederici, J. D. Haynes, Predicting vocal 
emotion expressions from the human brain. Hum Brain Mapp 34, 1971-1981 (2013). 

21. L. B. Baucom, D. H. Wedell, J. Wang, D. N. Blitzer, S. V. Shinkareva, Decoding the 
neural representation of affective states. Neuroimage 59, 718-727 (2012). 

22. M. V. Peelen, A. P. Atkinson, P. Vuilleumier, Supramodal representations of perceived 
emotions in the human brain. J Neurosci 30, 10127-10134 (2010). 

23. T. Ethofer, D. Van De Ville, K. Scherer, P. Vuilleumier, Decoding of Emotional 
Information in Voice-Sensitive Cortices. Curr Biol 19, 1028-1033 (2009). 

24. E. T. Rolls, F. Grabenhorst, L. Franco, Prediction of subjective affective state from brain 
activations. J Neurophysiol 101, 1294-1308 (2009). 

25. N. Kriegeskorte, M. Mur, P. Bandettini, Representational similarity analysis – connecting 
the branches of systems neuroscience. Front Syst Neurosci 2 (4), 1-28 (2009). 

26. P. Belin, S. Fillion-Bilodeau, F. Gosselin, The "Montreal Affective Voices": a validated 
set of nonverbal affect bursts for research on auditory affective processing. Behav Brain 
Res 40, 531-539 (2008). 

27. S. Fruhholz, W. Trost, S. A. Kotz, The sound of emotions-Towards a unifying neural 
network perspective of affective sound processing. Neurosci Biobehav Rev 68, 96-110 
(2016). 

28. C. Mendez-Bertolo, S. Moratti, R. Toledano, F. Lopez-Sosa, R. Martinez-Alvarez, Y. H. 
Mah, P. Vuilleumier, A. Gil-Nagel, B. A. Strange, A fast pathway for fear in human 
amygdala. Nat Neurosci 19, 1041-1049 (2016). 

29. A. Pannese, D. Grandjean, S. Fruhholz, Subcortical processing in auditory 
communication. Hear Res 328, 67-77 (2015). 

30. S. Fruhholz, W. Trost, D. Grandjean, The role of the medial temporal limbic system in 
processing emotions in voice and music. Prog Neurobiol 123, 1-17 (2014). 

31. D. Sander, J. Grafman, T. Zalla, The human amygdala: an evolved system for relevance 
detection. Rev Neurosci 14, 303-316 (2003). 

32. R. Adolphs, Neural systems for recognizing emotion. Curr Opin Neurobiol 12, 169-177 
(2002). 

33. S. Fruhholz, D. Sander, D. Grandjean, Functional neuroimaging of human vocalizations 
and affective speech. Behav Brain Sci 37, 554-555; discussion 577-604 (2014). 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/265843doi: bioRxiv preprint first posted online Feb. 15, 2018; 

http://dx.doi.org/10.1101/265843
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

34. G. G. Berntson, A. Bechara, H. Damasio, D. Tranel, J. T. Cacioppo, Amygdala 
contribution to selective dimensions of emotion. Soc Cogn Affect Neurosci 2, 123-129 
(2007). 

35. R. Adolphs, J. Russel, D. Tranel, A role for the human amygdala in recognizing 
emotional arousal from unpleasant stimuli. Psychol Sci 10, 167-171 (1999). 

36. C. D. Wilson-Mendenhall, L. F. Barrett, L. W. Barsalou, Neural evidence that human 
emotions share core affective properties. Psychol Sci 24, 947-956 (2013). 

37. A. Touroutoglou, E. Bliss-Moreau, J. Zhang, D. Mantini, W. Vanduffel, B. C. Dickerson, 
L. F. Barrett, A ventral salience network in the macaque brain. Neuroimage 132, 190-197 
(2016). 

38. D. J. Anderson, R. Adolphs, A framework for studying emotions across species. Cell 157, 
187-200 (2014). 

39. L. Pessoa, R. Adolphs, Emotion processing and the amygdala: from a 'low road' to 'many 
roads' of evaluating biological significance. Nature Rev Neurosci 11, 773-782 (2010). 

40. R. Remedios, N. K. Logothetis, C. Kayser, An auditory region in the primate insular 
cortex responding preferentially to vocal communication sounds. J Neurosci 29, 1034-
1045 (2009). 

41. P. Kanske, S. A. Kotz, Emotion speeds up conflict resolution: a new role for the ventral 
anterior cingulate cortex? Cereb Cortex 21, 911-919 (2011). 

 

Acknowledgments: Supported by UK’s Biotechnology and Biological Sciences Research Council 

(grants BB/M009742/1 to JG, BLG, SAK, and PB, and BB/L023288/1 to PB and JG), by the 

French Fondation pour la Recherche Médicale (grant AJE201214 to PB), and by Research 

supported by grants ANR-16-CONV-0002 (ILCB), ANR-11-LABX-0036 (BLRI), and the 

Excellence Initiative of Aix-Marseille University (A*MIDEX). Conceptualization: BLG, PB; 

Methodology: BLG, CW, NK, SAK, PB, JG; Software: BLG; Validation: BLG; Formal Analysis: 

BLG, CW, JG; Investigation: BLG, CW; Resources: BLG, PB; Data Curation: BLG, CW; Writing 

- Original Draft: BLG, CW, SAK, PB, JG; Writing – Review & Editing: BLG, CW, NK, SAK, 

PB, JG; Visualization: BLG; Supervision: BLG, PB, JG; Project Administration: JG; Funding 

Acquisition: BLG, SAK, PB, JG. We thank Dr. Olivier Coulon and Dr. Oliver Garrod for help 

with the development of the 3D glass brain.  

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/265843doi: bioRxiv preprint first posted online Feb. 15, 2018; 

http://dx.doi.org/10.1101/265843
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Fig. 1: 

 

 Emotions in vocal stimuli. (A) Auditory stimuli were generated by morphing recordings of short 

emotionally expressive vocalizations from the Montreal Affective Voices (19) portraying a neutral 

state and four emotions. Bottom: Euclidean distance matrix between stimuli in morphing space 

(each of five space dimensions measures the weight of each of the recorded vocalizations used to 

generate the morphed stimuli – dashed lines highlight morphing continua between pairs of 

recordings). Top: 2D non-metric MDS projection of the same morphing space. (B) Example of 

morphing between three vocalizations expressing different emotions (female speaker) and 

categorization responses (mean/error bar = bootstrap group averaged/standard error). (C) Effect of 

morphing on perceived emotion attributes: group- and speaker-averaged semi-partial correlation 

between morphing parameters (columns) and each of the perceived emotion attributes (rows). * p 

< 0.05 FWE corrected across parameters and attributes, absolute value of T(9) ≥ 4.34. 
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Fig. 2: 

 

Categorical and dimensional attributes of the perceptual structure of emotions in the voice. 

(A) Right = categorical RDM averaged across participants and speakers, showing pairwise 

stimulus differences in emotion categorization responses for the vocal stimuli (colors measure the 

percent of morphing between non-morphed recordings); left = 2D MDS of categorical RDMs (non-

metric INDSCAL, see Supplementary Methods). Note the strong resemblance with the perceived 

voice dissimilarity and MDS in C with the exception of the clustering of Pleasure and Neutral 

voices. (B) Dimensional attributes of emotions in voices: group averaged valence and arousal 

ratings, and corresponding RDMs and MDS representations. Note the strong valence differences 

between negative emotions on the one hand and Pleasure and Neutral, on the other, and the large 

arousal differences between Neutral and non-neutral voices. (C) Perceived voice dissimilarity 

(RDM) and corresponding 2D MDS. Note the clear clustering of each emotion and their separation 
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from morphs with the Neutral vocalization, characterized by lower arousal (panel B). (D) Encoding 

of vocally expressed emotions in perceptual dissimilarity: bee swarm plot of semi-partial 

correlations of emotion attribute RDMs with the perceptual dissimilarity RDM for each 

experiment participant and speaker (all p < 0.05 FWE corrected across correlations and contrasts 

except for valence semi-partial correlation; significant T(9) ≥ 4.2), and of the percent dissimilarity 

variance explained by category and dimension attributes (T(9) = 10.28, p = 0.00002). See Fig. S4 

for RSA analysis of the encoding of perceptual dissimilarity in fMRI and MEG response. 
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Fig. 3: 

 

Encoding of vocally expressed emotions in the spatio-temporal cerebral network. (A) Non-

selective encoding of perceived emotion attributes in fMRI response patterns, as measured by the 

correlation between emotion and fMRI response RDMs. Statistical maps thresholded for 
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significance (p < 0.05 FWE = 0.05 corrected across voxels) are represented within a transparent 

MNI template (ICBM 152 2009c, see Supplementary Methods). MEG analyses were constrained 

spatially within the fMRI correlation masks (see Fig S3 for further fMRI results). (B) Selective 

encoding of emotion categories at selected MEG latencies (left) and in fMRI (right), as measured 

by the semi-partial rank correlation between category and MEG response RDMs. Statistical maps 

thresholded for significance (red asterisk = global spatiotemporal peak of selective-encoding 

statistic). The bottom panel shows the time-varying T(9) statistic used to assess the selective 

encoding of emotion attributes in selected ROIs. Arrows highlight the peak-effect latency for each 

ROI. The horizontal lines denote significant T(9) statistics – temporally overlapping significance 

for different ROIs emerge for shared T-statistic spatio-temporal clusters. (C) Selective encoding 

of valence and (D) arousal. (E) Contrasts of the MEG RDM variance explained uniquely by the 

category vs. dimension encoding model (See Fig. S3 for pairwise MEG contrasts and fMRI 

analyses). Also shown are the cerebral MEG RDMs at global contrast peaks. Note the similarity 

of the cerebral RDMs in this figure to those for the arousal and categorization behavioral 

judgments in Fig. 2. HG-L = left Heschl’s gyrus; m/a STG/MTG = mid/anterior superior/middle 

temporal gyrus; IFGt = inferior frontal gyrus, pars triangularis.   

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/265843doi: bioRxiv preprint first posted online Feb. 15, 2018; 

http://dx.doi.org/10.1101/265843
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

List of Supplementary Materials 

Supplementary Materials and Methods 

Figures S1-S4 

Tables S1-S4 

Audio S1-S78 

References  

 

  

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/265843doi: bioRxiv preprint first posted online Feb. 15, 2018; 

http://dx.doi.org/10.1101/265843
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Supplementary Materials and Methods 

Participants Ten right-handed healthy adults (5 female; age from 19 to 38, mean = 25.1) 

participated in this study. All participants had normal hearing as assessed by an audiogram, 

provided written informed consent, and received financial compensation of £6/hour for their 

participation. The study was conducted in accordance with the Declaration of Helsinki and was 

approved by the local ethics committee (College of Science and Engineering, University of 

Glasgow).  

Stimulus material Stimuli consisted of nonverbal emotionally expressive vocalizations from the 

Montreal Affective Voices database (26) and were produced by two actors (one male, one female). 

Each actor produced five vocalizations (vowel /a/) expressing: anger, disgust, fear, pleasure, and 

neutral. Vocalizations normalized in root mean square (r.m.s.) amplitude were then used to 

generate the stimulus set by morphing between each pair of vocalizations from the same speaker. 

Voice morphing was performed using STRAIGHT (42) in Matlab (Mathworks, Inc, Natick, USA). 

STRAIGHT performs an instantaneous pitch-adaptive spectral smoothing in each stimulus for 

separation of contributions to the voice signal arising from the glottal source versus supra-

laryngeal filtering. A voice stimulus is decomposed by STRAIGHT into five parameters (f0, 

frequency, duration, spectrotemporal density, and aperiodicity) that can be manipulated and 

combined across stimuli independently of one another. Time-frequency landmarks to be put in 

correspondence across voices during morphing were manually identified in each stimulus, and 

corresponded to the frequencies of the first three formants at onset and offset of phonation. 

Morphed stimuli were then generated by resynthesis based on the linear (time and aperiodicity) 

and logarithmic (f0, the frequency structure and spectrotemporal density) interpolation of these 

time-frequency landmarks.  
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Two types of morphing continua were produced: 1) between neutral and each of the four emotions 

(neutral-anger, neutral-disgust, neutral-fear, and neutral-pleasure), and 2) between pairs of 

emotions (anger-disgust, anger-fear, anger-pleasure, disgust-fear, disgust-pleasure, and fear-

pleasure). The morphing continuum between neutral and each emotion consisted of 6 stimuli, 

progressing in acoustically equal steps of 25% (e.g., neutral 100%  neutral 75%/anger 25%  

neutral 50%/anger 50%  neutral 25%/anger 75%  anger 100%  anger 125%). The 125% 

emotion was generated by extrapolating along the neutral-emotion dimension to create a 

caricatured emotion. The morphing continuum between pairs of emotions consisted of 5 stimuli, 

again progressing in acoustically equal steps of 25%. In total, 78 stimuli were used in the 

experiment, consisting of 39 stimuli for each speaker (cf. Audio Files S1-S78). They were 

normalized to the average duration of 796 ms using pitch-preserving time-stretching algorithms, 

and then in root mean square amplitude. 

Experimental design Each individual took part in 11 experimental sessions. Neuroimaging data 

were collected during the first 8 sessions (4 fMRI and 4 MEG; imaging modalities alternated with 

fMRI first for half of the participants; MEG at least 3 days after prior fMRI session to avoid 

magnetization artefacts). Behavioral data were collected during the last three sessions, perceived 

categorical and dimensional emotion attributes being estimated only during the last session to 

avoid biases towards either during the rest of the experiment. 

On each run of the fMRI and MEG acquisition (20 runs per fMRI session and at least 78 runs per 

participant across all of the MEG sessions), participants were presented with all of the stimuli from 

one speaker (random speakers order on each pair of subsequent blocks; inter-stimulus interval – 

ISI – jittered between 3 and 5 s) while carrying out a one-back repetition detection task (1 repetition 

per run; random selection of repeated stimulus; group averaged p correct = 98%; s.e.m. = 0.2%). 
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Throughout the session, participants were instructed to fixate a cross, presented in greyscale 

(screen field of view = 19x80 and 26x19 degrees for fMRI and MEG, respectively). 

At each of the first two behavioral sessions, participants rated the dissimilarity between all of the 

stimuli from the same speaker (speaker order counterbalanced across participants). On each trial, 

they were presented with one of the possible 741 pairs of sounds (within-pair ISI = 250ms; random 

within-pair order) and were asked to rate how dissimilar they were by placing a slider along a 

visual analogue scale marked “very similar” and “very dissimilar” at the two extremes. They could 

listen to the pair of stimuli as many times as necessary before giving a response. This experimental 

phase was preceded by an initial familiarization phase during which participants were presented 

with all of the sound stimuli two times (ISI = 250 ms; random order). In this phase, they were 

instructed to estimate the maximum and minimum between-sound dissimilarity, so as to optimize 

the usage of the rating scale in the subsequent experimental phase. The procedure was initially 

practiced with a set of 10 vocalizations not included in the main experiment.  

During the last behavioral session, participants performed two tasks – emotion categorization and 

ratings of dimension attributes. In the categorization task, they identified the emotion as being 

anger, disgust, fear, or pleasure. In the rating tasks, participants rated each stimulus on arousal 

(low to high) and valence (negative to positive) using an on-screen slider. Before the experiment 

began, participants were given 10 practice trials for both the categorization and rating tasks on an 

independent set of vocal stimuli. Participants were then familiarized to the entire stimulus set 

before the first block. On each block of trials, participants carried out either the category or rating 

tasks (alternated across blocks) for all of the stimuli from the same speaker (pseudo-random order 

of speaker gender with not more than two subsequent same-gender blocks). Throughout the 
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session, each of the two tasks was repeated three times for each of the speakers, for a total of 12 

blocks of trials. 

Sound stimuli (sampling rate = 48 kHz; bit depth = 16 bit) were presented through electrostatic 

headphones (NordicNeuroLab, Bergen, Norway) for fMRI, Etymotic ER-30 tubephone for MEG, 

and during the behavioral sessions through BeyerDynamic DT 770 Pro headphones receiving the 

audio signal from the Audiophile 2496 sound card amplified with a Mackie 1604-VLZ PRO 

monitor system. The MEG tubephone system introduced strong spectral coloring of the sound 

stimuli and suppressed heavily frequencies > 6 kHz. Stimuli for all sessions were consequently 

low-pass filtered at 5 kHz. Flat-frequency response for the MEG audio stimulation chain was 

achieved through inverse filtering methods.  

Neuroimaging data acquisition fMRI scans were acquired with a Siemens 3T Trio scanner, using 

a 32-channel head coil. Functional multiband echo planar imaging (EPI) volumes were collected 

with a repetition time (TR) of 1s (echo time TE = 26 ms; flip angle = 60; multiband factor = 4; 

GRAPPA = 2). Each functional volume included 56 slices of 2.5 mm thickness (inter-slice gap = 

2.5 mm; interleaved even acquisition order (interleaved even) in an axial orientation along the 

direction of the temporal lobe, providing nearly whole-brain coverage. The in-plane voxel size was 

2.5 mm2 (78 × 78 matrix). A whole-brain, high-resolution, structural T1-weighted MP-RAGE 

image (192 sagittal slices, 256 × 256 matrix size, 1 mm3 voxel size) was also acquired to 

characterize the subjects’ anatomy. In each of the fMRI sessions, we also collected a field map to 

correct for geometric distortions in the EPI volumes caused by magnetic field inhomogeneities 

(43).  

MEG recordings were acquired with a 248-magnetometers whole-head MEG system (MAGNES 

3600 WH, 4-D Neuroimaging) at a sampling rate of 1017.25 Hz. Participants were seated upright. 
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The position of five coils, marking fiducial landmarks on the head of the participants, was acquired 

at the beginning and at the end of each block.  

Analysis of behavioral data We initially assessed the effect of voice morphing on perceived 

emotion attributes (five morphing % parameters describing each experimental stimulus – one for 

each expressed emotion and one for the neutral vocalization; six measures of perceived emotion – 

four emotion categorization probabilities plus valence and arousal ratings). The five morphing 

parameters were not orthogonal because for each stimulus only two at best had a non-zero value 

(average Spearman correlation between morph parameters = -0.24; STD = 0.02). For this reason, 

the perceptual effect of morph parameters was assessed independently of their shared variance by 

measuring their Spearman semi-partial correlation (s.p.r) with the measures of perceived emotion. 

Significance testing for all of the analyses in this study relied on a permutation-based group-level 

random effects (RFX) approach. Here, we: [1] estimated independently for each participant and 

speaker the null s.p.r distribution for each of the 30 morph/emotion pairs by permuting randomly 

the stimulus labels (N permutations = 100,000; same permutations across speakers and 

morph/emotion pairs, but not across participants); [2] averaged across speaker genders permuted 

and unpermuted s.p.r. converted to the Fisher Z scale; [3] subtracted the median bias of the null 

s.p.r distributions from both the permuted and unpermuted s.p.r.; [4] computed the T(9) test for 

the group-average permuted and unpermuted s.p.r.; [5] finally established significance thresholds 

for the unpermuted T(9) tests as the 95th percentile of the distribution of the maximum of the 

absolute value of the permuted T(9) statistics (two-sided inference) across pairs of morph 

parameters with perceived emotion measures, thus controlling for family-wise error (FWE) at a 

0.05 level. 
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Subsequent modeling of behavioral data assessed the association of perceived stimulus 

dissimilarity (pairwise dissimilarity ratings) with perceived emotion categories, valence and 

arousal (each transformed to a pairwise stimulus distance – emotion representational dissimilarity 

matrix RDM). The valence and arousal RDMs measured the absolute pairwise difference in 

valence and arousal ratings, respectively. The category RDM was defined as the Euclidean 

distance between stimulus-specific categorization response profiles (e.g., categorization profile 

consisting of 10, 2, 1 and 0 anger, disgust, fear and pleasure responses). All emotion RDMs were 

computed independently for each participant and speaker. Significance testing relied on a similar 

approach as for the analysis of the effect of morph parameters on perceived emotion attributes (N 

permutations = 100,000; reshuffling of rows and columns of distance matrices). Importantly, 

however, we opted for one-tailed inference to assess the significance of the correlation between 

emotion RDMs themselves (FWE = 0.05 across the three pairwise correlations) and the correlation 

and semi-partial correlations between emotion RDMs, on the one hand, and the dissimilarity 

ratings, on the other. Additional contrasts compared the proportion of dissimilarity rating variance 

uniquely explained by each of the three emotion RDMs, and by the category RDM vs. the 

dimensional attribute RDMs together (square root of unique explained variances Fisher Z 

transformed prior to contrast; two-tailed inference for all contrasts; FWE = 0.05 adjusted across 

the three pairwise contrasts; two-tailed percentile p-values for categories vs. dimensions contrast). 

Preprocessing of neuroimaging data Analyses were carried out in Matlab using SPM12, Fieldtrip 

(44), GLMdenoise (45) and custom code. The initial preprocessing of fMRI and MEG data 

produced for each participant the stimulus-specific responses further analyzed to assess the 

encoding of emotion attributes (see below). Functional MRI images from all runs were realigned 

to the first image in the first run and unwarped to correct for movement-by-distortion interactions 
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(full width at half maximum – FWHM = 5 and 4 mm for realignment and unwarp, respectively; 

for both 7th degree B-spline for interpolation), and slice time corrected to the onset of the 

temporally central slice. Anatomical volumes were co-registered to the grand-average of the 

preprocessed functional volumes and segmented into grey matter, white matter, and cerebro-spinal 

fluid. Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (46) (DARTEL) 

was used to create a common brain template for all of the participants. An initial group DARTEL 

grey-matter mask was created by considering all non-cerebellum voxels with a grey-matter 

probability > 0.1. The final analysis mask for each individual was given by the 6-connected voxels 

within the conjunction of the group mask deformed to native space with the voxels associated with 

a participant-specific grey-matter probability > 0.25.  

For each participant, the 80 fMRI runs (40 for each of the two speaker genders) were divided into 

5 mixed-gender groups of 16 runs each (interleaved assignment of runs to groups). Unsmoothed 

native-space data within the analysis mask for each group of runs were analyzed within a massively 

univariate general linear model (GLM) that estimated the fMRI response specific to each stimulus. 

Stimulus-specific regressors were created by convolving a sound on-off binary time-series with 

the canonical hemodynamic response function (HRF). The GLM included a high-pass discrete 

cosine transform (DCT) filter (cut off = 128 s), the head motion regressors estimated during the 

realignment step and a run-specific intercept. The GLM also included additional noise regressors 

that modeled temporal effects unrelated to the stimulus condition (e.g., blood pulse). They were 

estimated independently for each of the groups of runs and participants using GLMdenoise ((45); 

default polynomial detrending replaced with DCT filter), resulting in N noise regressors = 6 on 

average (across-participant STD = 2).  
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Several initial steps of the preprocessing of MEG data were carried out on the unsegmented data 

from each run. Infrequent SQUID jumps (observed in 2.3% of the channels, on average) were 

repaired using piecewise cubic polynomial interpolation. For each participant independently, we 

then removed channels that consistently deviated from the median spectrum (shared variance < 

25%) on at least 25% of the runs (N removed channels = 8.4 on average; STD = 2.2). Runs 

associated with excessive head movements or MEG channels noise or containing reference 

channel jumps were finally discarded, leaving on average 75.9 runs per participant (range = 65–

84; average maximum coil movement across blocks and participants = 5 mm; STD = 1 mm). 

Environmental magnetic noise was removed an initial time using regression based on principal 

components of reference channels. Both the MEG and reference data were then filtered using a 

forward-reverse 70 Hz FIR low-pass (-40 dB at 72.5 Hz), a 0.2 Hz elliptic high-pass (-40 dB at 0.1 

Hz) and a 50 Hz FIR notch filter (-40 dB at 50 ± 1Hz), and were subsequently resampled to 150 

Hz. Residual magnetic noise was then removed applying once more the same method as for the 

full-resolution signal. ECG and EOG artifacts were removed using ICA (runica on 30 components) 

and were identified based on the time course and topography of IC components (47). MEG data 

from each run was finally segmented into trials (-0.2 to 1.3 s after sound onset).  

A native-space source-projection grid with a resolution of 3.5 mm was prepared for each 

participant by resampling the native-space analysis mask for the fMRI data. Depth-normalized 

lead fields were computed based on a single shell conductor model. Source-projection filters were 

then computed for each run using LCMV beamformers (regularization = 5%; sensor covariance 

across all trials excluding repetitions) and reduced to the maximum-variance orientation across all 

runs. Source-projected stimulus-specific time courses were finally averaged within 5 independent 
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mixed-gender groups of runs (interleaved assignment of runs to groups), leading to a reduction of 

the computational burden for subsequent data-analysis steps. 

Cerebral encoding analysis We implemented a whole-brain searchlight representational similarity 

analysis (RSA; (25); Fig. S1) to assess the encoding of perceived emotion attributes in multivariate 

spatial (fMRI) and spatiotemporal (MEG) cerebral response patterns. We followed the same 

approach adopted for the analysis dissimilarity rating data, and measured here the association 

between emotion and cerebral response RDMs.  

For fMRI, cerebral RDMs were computed in native space within a spherical region (6 mm 

diameter) centered at each grey-matter mask location (at least 50% in-mask voxels). In particular, 

we computed the cross-validated Mahalanobis distance between stimulus-specific response 

patterns (Mahalanobis whitening of stimulus-specific GLM estimates using the GLM residuals 

within the searchlight) by cross-validating the response pattern covariance across the 5 groups of 

mixed-gender runs, and finally converting it to a (whitened) Euclidean distance (48, 49). For MEG, 

cerebral RDMs were computed within a spatiotemporal searchlight of 10 mm diameter and 50 ms 

temporal window from -0.15 to 1.1 seconds from onset with 15 ms of overlap between subsequent 

temporal windows. For each searchlight, we derived the cross-validated Euclidean distance 

between stimulus-specific beamformed time-courses from the covariance between stimulus-

specific response patterns cross-validated between the 5 groups of mixed-gender runs. 

RSA analyses assessed, in order: [1] the Spearman correlation between cerebral and emotion 

RDMs (non-selective encoding; one sided inference); [2] the Spearman s.p.r between cerebral and 

emotion RDMs (selective encoding; one sided inference); [3] the pairwise contrasts of the unique 

cerebral RDM variance explained by each of three pairs of emotion RDMs, and [4] the explained 

cerebral RDM variance contrasts between the categorical and dimensional models (valence and 
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arousal together; two-sided inference for all contrasts). Importantly, within each imaging modality, 

we: [1] computed all encoding measures in native space and carried out group-level RFX inference 

(T tests) on the encoding maps transformed to the group DARTEL space (FWHM of Gaussian 

smoothing of native-space encoding maps = 8 for both fMRI and MEG); [2] used cluster mass 

enhancement of the group-level statistics, permutations included (permutation of rows and 

columns of RDMs, as for analysis of perceptual dissimilarity; 3D and 4D spatiotemporal cluster 

mass enhancement for fMRI and MEG, respectively; cluster-forming threshold of T(9) = 1.83 and 

2.26 for one- and two-sided inference, respectively; (50)); [3] mitigated the multiple comparison 

problem by constraining analysis masks at each testing step within the significance mask from the 

previous step (correlations tested at whole brain and latency-range levels; s.p.r within significant 

correlation masks; variance contrasts within significant s.p.r masks). For MEG we assessed the 

initial cerebral response/emotion attribute RDM correlations within the significant correlation 

masks from the fMRI analysis, providing a further mitigation of the multiple comparison problem 

and capitalizing on the superior spatial and temporal specificity of fMRI and MEG, respectively. 

At all steps, we corrected for multiple comparisons within the entire analysis mask by establishing 

significance thresholds for the non-permuted cluster-mass enhanced T statistics as the 95th 

percentile of the permutation distribution for within-mask CM enhanced maxima for one-sided 

tests and as the 2.5th and 97.5th percentiles of within-mask minima and maxima, respectively for 

two-sided inference (maximum-statistic approach; FWE = 0.05).  

Visualization The non-metric MDS models in Fig. 1 and 2 were computed using the R-package 

SMACOF (51). We modeled the dissimilarity ratings and the emotion RDMs using an inter-

individual difference scaling model (INDSCAL), avoiding well known distortions of the 

representational geometry associated with group averaging of distance data (52).  The 3D glass 
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brains in Fig. 3 and S3 comprised two components: [1] a mesh of the ICBM 152 2009c Nonlinear 

Asymmetric template (53); [2] the functional blobs, rendered by first modeling the surface of each 

blob with a 3D mesh, and then projecting onto it the volumetric statistical map it circumscribed 

(maximum projection within 7 mm radius sphere centered at mesh vertex). All meshes and 

projections were computed within BrainVISA (http://brainvisa.info/), and were rendered using a 

custom OpenGL shader for the transparency effect. 
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Fig. S1: 

 

Representational similarity analysis of the encoding of perceived emotion attributes in 

spatio-temporal cerebral response patterns. (A) Spatial (fMRI) and spatio-temporal (MEG) 

stimulus-specific response patterns (percent signal change and source-space event-related fields 

for fMRI and MEG, respectively) were extracted within a grey-matter spherical searchlight 

(radius: 6 and 10 mm for fMRI and MEG, respectively). The MEG spatio-temporal searchlight 

had a duration of 50ms and an overlap with subsequent windows of 15ms. (B) Cerebral encoding 

analyses involved the measurement of the association between the pairwise distance of stimulus-

specific cerebral responses (cerebral representational dissimilarity matrices – RDMs) and the 

pairwise distance of stimulus-specific perceived emotion attributes (emotion RDMs). (C) For each 

modality, encoding tests were carried out in subsequent steps within nested significance masks. 

First, we assessed for the non-selective encoding of each emotion attribute by measuring the 
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correlation of each with the cerebral RDMs. Note that emotion attribute RDMs are correlated (see 

main text) and explain overlapping portions of the cerebral RDM variance. The second step 

focused on portions of the cerebral RDM variance explained uniquely by each emotion attribute, 

and assessed their selective encoding by means of their semi-partial correlations with the cerebral 

RDMs. Finally, we directly contrasted the explained cerebral RDM variance specific to the 

category- or dimension-encoding model, and the unique explained cerebral RDM variance specific 

to each of the three perceived emotion attributes (three pairwise contrasts). Subsequent tests were 

carried out independently with the two modalities, with the important exception of constraining 

the non-selective MEG encoding tests within those brain areas characterized by non-selective 

emotion attribute encoding in fMRI data.  
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Fig. S2: 

 

Time-varying emotion encoding in MEG data. Time courses for the MEG T(9) statistics used 

to assess the selective encoding of emotion attributes and to contrast the MEG RDM variance 

explained by the category vs. dimension models. The time courses are extracted from the global 

and local peaks of the MEG statistical maps (see Table S1). HG-L = left Heschl’s gyrus; m 

STG/MTG = mid superior/middle temporal gyrus; IFGt = inferior frontal gyrus, pars triangularis. 

See Fig. 3 for more details. 
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Fig. S3: 

 
Encoding of the perceived emotional attributes of voices in spatiotemporal (MEG) and 

spatial (fMRI) cerebral response patterns. All effects significant at p < 0.05 FWE corrected 

across voxels (fMRI and MEG) and time points (MEG) within the analysis masks. p/m/a STG-R 

= right posterior/mid/anterior superior temporal gyrus; STS = superior temporal sulcus; IFGop/t 

= inferior frontal gyrus, pars opercularis/triangularis; HG = Heschl’s gyrus. See Fig. 3 and 

Tables S2 and S3 for more details.  
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Fig S4: 

 
 
Encoding of perceived dissimilarity in cerebral response patterns. We tested for the cerebral 

encoding of the perceived dissimilarity of the emotionally expressive stimuli using the same 

correlation approach as for the emotion attribute RDMs. The MEG analysis was constrained 

within the mask for a significant correlation between fMRI RDMs and dissimilarity ratings data. 

All effects shown significant at FWE < 0.05. mSTG-L = left mid superior temporal gyrus; IFGt 

= inferior frontal gyrus, pars triangularis; HG = Heschl’s gyrus; RolOp = Rolandic operculum. 

See Figure 3 for more details. 
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Table S1: Global and local peaks of main emotion encoding analyses in MEG data. The 

table lists global and local peaks in the GLM T-maps. Anatomical labels are based on the 

Automated Anatomical Labeling (AAL) atlas. HG-L = left Heschl’s gyrus; mSTG/MTG = mid 

superior/middle temporal gyrus; IFGt = inferior frontal gyrus, pars triangularis; Ins = insula; 

Amy = amygdala; * = global peak; effect size = group averaged of native-space semi-partial 

correlations at corresponding voxels and of explained variance contrasts; SEM = standard error 

of the participant average. All effects significant at p < 0.05 FWE corrected across voxels and 

time points. 

Effect Anatomical 
label 

Latency 
(ms) 

MNI 
coordinates 

T 
(9) 

Effect size 
(s.e.m.) 

Categories HG-L 77 -62 -30 20 4.93 0.11(0.02) 

Categories mSTG-L* 117 -42 -2 -18 8.19 0.09(0.01) 

Categories IFGt-L 157 -49 23 -3 6.55 0.09(0.01) 

Valence Ins-R* 757 41 -2 -8 5.1 0.15(0.02) 

Arousal mMTG-R* 237 56 -17 -18 5.09 0.14(0.02) 

Arousal HG-R 717 58 -10 17 8.04 0.26(0.03) 

Arousal Amygdala-R 557 14 -2 -8 4.2 0.11(0.02) 

Cat>Dim mSTG-R* 157 66 -37 4 5.31 1.47(0.04) 

Dim>Cat HG-R* 717 64 -17 27 6.12 7.10(0.10) 
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Table S2: Global and local peaks of pairwise contrasts between the MEG variance 

explained by each emotion attribute. The table lists global and local peaks in the GLM T-

maps. Cat = categories; Val = valence; Aro = Arousal; m/pSTG-R = right mid/posterior superior 

temporal gyrus; aSTS = anterior superior temporal sulcus; IFGop = left inferior frontal gyrus, 

pars opercularis. All effects significant at p < 0.05 FWE corrected within the analysis mask. See 

Table S1 for further details.   

Effect Anatomical 
label 

Latency 
(ms) 

MNI 
coordinates 

T 
(9) 

Effect size 
(s.e.m.) 

Cat>Val mSTG-R* 157 66 -30 10 5.30 2.24(0.05) 

Cat>Val mSTG-R 198 66 -22 4 5.26 1.53(0.04) 

Cat>Val aSTS-R 357 56 0 -13 3.81 0.62(0.02) 

Cat>Val pSTG-R 357 56 -52 22 3.63 0.47(0.01) 

Cat>Aro mSTG-R* 157 66 -37 4 5.11 2.56(0.07) 

Aro>Cat mSTG-R 717 66 -30 2 4.00 2.73(0.08) 

Aro>Cat IFGop-R* 717 51 0 20 4.08 2.22(0.03) 

Aro>Val mSTG-R* 637 61 -10 -3 4.64 5.61(0.20) 
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Table S3: Global and local peaks of emotion encoding and explained variance contrast 

analyses in fMRI data. The table lists global and local peaks in the GLM T-maps. HG-L = left 

Heschl’s gyrus; IFGt/op = inferior frontal gyrus, pars triangularis/opercularis; m/a STG/STS = 

mid/anterior superior temporal gyrus/sulcus. All effects significant at p < 0.05 FWE corrected 

within the analysis mask. See Table S1 for further details. 

Effect Anatomical 
label 

MNI 
coordinates 

T 
(9) 

Effect size 
(s.e.m.) 

Categories HG-L* -56 -14 0 5.89 0.20(0.02) 

Categories IFGt-L -52 20 2 4.03 0.15(0.02) 

Categories mSTG-R 66 -32 10 5.79 0.19(0.02) 

Valence pSTG-R* 54 -47 14 6.17 0.16(0.01) 

Arousal aSTG-L* -46 6 -13 6.31 0.20(0.01) 

Arousal mSTS-R 61 -32 0 4.39 0.17(0.02) 

Arousal IFGop-R 48 0 17 3.12 0.17(0.02) 

Cat>Val mSTG-R 66 -27 7 3.68 2.68(0.05) 

Cat>Val mSTG-L* -64 -32 14 4.5 2.08(0.02) 

Aro>Val mSTG-R* 66 -22 4 4.26 1.28(0.06) 
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Table S4: Global and local peaks of encoding of perceived voice dissimilarity in fMRI and 

MEG cerebral response patterns. The table lists global and local peaks in the GLM T-maps for 

testing the correlation between fMRI and MEG cerebral response patterns and perceptual voice 

dissimilarity as estimated from behavioral responses. mSTG-L = right mid superior temporal 

gyrus; RolOp = Rolandic operculum; HG-L = left Heschl’s gyrus. All effects significant at p < 

0.05 FWE corrected within the analysis mask. See Table S1 for further details. 

Modality Anatomical 
label 

MNI 
coordinates 

T 
(9) 

Effect size 
(s.e.m.) 

Latency 
(ms) 

fMRI mSTG-L* -64 -34 14 16.15 0.22(0.01)  

fMRI mSTG-L -62 -10 -8 14.68 0.20(0.02)  

fMRI RolOp-R 61 -7 10 9.29 0.23(0.02)  

fMRI IFGt-L -46 26 7 3.61 0.12(0.01)  

MEG mSTG-L -62 -47 -6 13.97 0.14(0.02) 117 

MEG mSTG-R* 44 -30 -6 17.97 0.19(0.02) 237 

MEG HG-L -46 -44 22 7.26 0.13(0.02) 717 

MEG RolOp-R 64 -17 20 12.24 0.26(0.02) 757 
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