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Abstract Seeing a speaker’s face enhances speech intelligibility in adverse environments. We12

investigated the underlying network mechanisms by quantifying local speech representations and13

directed connectivity in MEG data obtained while human participants listened to speech of14

varying acoustic SNR and visual context. During high acoustic SNR speech encoding by entrained15

brain activity was strong in temporal and inferior frontal cortex, while during low SNR strong16

entrainment emerged in premotor and superior frontal cortex. These changes in local encoding17

were accompanied by changes in directed connectivity along the ventral stream and the18

auditory-premotor axis. Importantly, the behavioural benefit arising from seeing the speaker’s face19

was not predicted by changes in local encoding but rather by enhanced functional connectivity20

between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-motor21

interactions in visual speech representations and suggest that functional connectivity along the22

ventral pathway facilitates speech comprehension in multisensory environments.23

24

Introduction25

When communicating in challenging acoustic environments we profit tremendously from visual26

cues arising from the speakers face. Movements of the lips, tongue or the eyes convey significant27

information that can boost speech intelligibility and facilitate the attentive tracking of individual28

speakers (Ross et al., 2007; Sumby andPollack, 1954). This multisensory benefit is strongest for con-29

tinuous speech, where visual signals provide temporal markers to segment words or syllables, and30

provide linguistic cues (Grant and Seitz, 1998). Previous work has identified the synchronization31

of brain rhythms between interlocutors as a potential neural mechanism underlying the visual en-32

hancement of intelligibility (Hasson et al., 2012; Park et al., 2016; Peelle and Sommers, 2015; Pick-33

ering and Garrod, 2013; Schroeder et al., 2008). Both acoustic and visual speech signals exhibit34

pseudo-rhythmic temporal structures at prosodic and syllabic rates (Chandrasekaran et al., 2009).35

These regular features can entrain rhythmic activity in the observer’s brain and facilitate perception36

by aligning neural excitability with acoustic or visual speech features (Giraud and Poeppel, 2012;37

Mesgarani and Chang, 2012; Park et al., 2016; Peelle and Davis, 2012; Schroeder et al., 2008; van38

Wassenhove, 2013). While this model makes clear predictions about the visual enhancement of39

speech encoding in challenging environments, the network organization of multisensory speech40
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Figure 1. Experimental paradigm and analysis. (A) Stimuli consisted of 8 continuous 6 minute long audio-visual speech samples. (B)
The experimental design comprised 8 conditions, defined by the factorial combination of 4 levels of speech to background signal to
noise ratio (SNR = 2, 4, 6, and 8 dB) and two levels of visual informativeness (VI: Visual context Informative: video showing the narrator in
synch with speech; VN: Visual context Not informative: video showing the narrator producing babble speech). Experimental conditions
lasted 1 (SNR) or 3 (VIVN) minutes, and were presented in pseudo-randomized order. (C) Analyses were carried out on band-pass filtered
speech envelope and MEG signals. The MEG data were source-projected onto a grey-matter grid (LCMV beamformer). One analysis
quantified speech entrainment, i.e. the mutual information (MI) between the MEG data and the speech envelope, and the extent to
which this was modulated by the experimental conditions. A second analysis quantified directed functional connectivity (DI) between
seeds and the extent to which this was modulated by the experimental conditions. A final analysis assessed the correlation of either MI
or DI with word-recognition performance.

enhancement remains unclear.41

Previous work has implicatedmany brain regions in the visual enhancement of speech, including42

superior temporal (Beauchamp et al., 2004; Nath and Beauchamp, 2011; Riedel et al., 2015; van At-43

teveldt et al., 2004), premotor and inferior frontal cortices (Arnal et al., 2009; Evans andDavis, 2015;44

Hassonetal., 2007b; LeeandNoppeney, 2011;Meisteretal., 2007;Skipperetal., 2009;Wrightetal.,45

2003). Furthermore, some studies have shown that the visual facilitation of speech encoding may46

even commence in early auditory cortices (Besle et al., 2008; Chandrasekaran et al., 2013; Ghaz-47

anfar et al., 2005; Kayser et al., 2010; Lakatos et al., 2009; Zion Golumbic et al., 2013). However, it48

remains to be understoodwhether visual context shapes the encoding of speechdifferentiallywithin49

distinct regions of the auditory pathways, or whether the visual facilitation observed within auditory50

regions is simply fed forward to upstream areas, perhaps without further modification. Hence, it51

is still unclear whether the enhancement of speech-to-brain entrainment is a general mechanism52

that mediates visual benefits at multiple stages along the auditory pathways.53

Many previous studies on this question were limited by three conceptual shortcomings: first,54

many have focused on generic brain activations rather than directly mapping the task-relevant sen-55

sory representations (activation mapping vs. information mapping, Kriegeskorte et al., 2006), and56

hence have not quantified multisensory influences on those neural representations directly shaping57

behavioural performance. Second, while many studies have correlated speech-induced local brain58

activity with behavioural performance, few studies have quantified directed connectivity along the59

auditory pathways to ask whether perceptual benefits are better explained by changes in local en-60

coding or by changes in functional connectivity. And third, most studies have neglected the continu-61

ous predictive structure of speech by focusing on isolated words or syllables. However, this structure62
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may play a central role for mediating the visual benefits (Bernstein et al., 2004;GiraudandPoeppel,63

2012; Schroeder et al., 2008; Schwartz and Savariaux, 2014). Importantly, given that the predictive64

visual context interacts with acoustic signal quality to increase perceptual benefits in adverse envi-65

ronments (Callan et al., 2014; Ross et al., 2007; Schwartz et al., 2004; Sumby and Pollack, 1954),66

one needs to manipulate both factors to fully address this question. Overcoming these problems,67

we capitalized on the statistical and conceptual power offered by naturalistic speech to study the68

network mechanisms that underlie the visual facilitation of speech perception.69

Using source localized MEG activity we systematically investigated how local speech representa-70

tions and task-relevant directed functional connectivity along the auditory pathways change with71

visual context and acoustic signal quality. Specifically, we extracted neural signatures of speech72

representations by quantifying the mutual information between the MEG signal and the speech73

envelope. Furthermore, we quantified directed causal connectivity between nodes in the speech74

network using lagged mutual information between MEG source signals. Using linear modelling we75

then asked how local encoding and connectivity are affected by contextual information about the76

speakers face, by the acoustic signal to noise ratio, and by their interaction, and how each of these77

neural signatures relates to behavioural performance.78

Results79
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Figure 2. Behavioural performance.
Word recognition performance for
each of the experimental conditions
(mean ± SEM across participants n=19).

Participants (n = 19) were presented with continuous speech80

that varied in acoustic quality (signal to noise ratio, SNR) and81

the informativeness of the speaker’s face. The visual con-82

text could be either informative (VI), showing the face pro-83

ducing the acoustic speech, or uninformative (VN), showing84

the same face producing nonsense babble (Fig. 1A,B). We85

measured brain-wide activity using MEG while participants86

listened to eight six-minute texts and performed a delayed87

word recognition task. Behavioural performance was better88

during high SNR and an informative visual context (Fig. 2):89

a repeated measures ANOVA revealed a significant effect of90

SNR (F(3,54) = 36.22, p < 0.001, Huynh-Feldt corrected, 𝜂2
𝑝 =91

0.67), and of visual context (F(1,18) = 18.95, p < 0.001, 𝜂2
𝑝 = 0.51),92

aswell as a significant interaction (F(3,54) = 4.34, p = 0.008, 𝜂2
𝑝 =93

0.19). This interaction arose froma significant visual enhance-94

ment for SNRs of 4 and 8 dB (paired T(18) ≥ 3.00, Bonferroni95

corrected p ≤ 0.032; p > 0.95 for other SNRs).96

To study the brain activity underlying this behavioral ben-97

efit we analyzed source-projected MEG data using information theoretic tools to quantify the fidelity98

of local neural representations of the speech envelope (speech-to-brain entrainment), as well as the99

directed causal connectivity between relevant regions. For both, coding and connectivity, we (1)100

modelled the extent to which they were modulated by the experimental conditions and (2) asked101

whether they correlated with behavioural performance across conditions and with the visual benefit102

(VI-VN) across SNRs (Fig. 1C).103

Widespread speech-to-brain entrainment at multiple time scales104

Speech-to-brain entrainment was quantified by the mutual information (MI) between the MEG time105

course and the speech envelope (not the speech + noise mixture) in individual frequency bands106

(Gross et al., 2013; Kayser et al., 2015b, Fig. 1). At the group-level, we observed widespread signif-107

icant speech MI in all considered bands from 0.25 to 48 Hz (FWE = 0.05), except between 18–24108

Hz (Fig. S1A). Consistent with previous results (Gross et al., 2013; Ng et al., 2013; Park et al., 2016)109

speech MI was higher at low frequencies and strongest below 4 Hz (Fig. S1B). This time scale is typ-110

ically associated with syllabic boundaries or prosodic stress (Giraud and Poeppel, 2012; Greenberg111
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Figure 3. Modulation of speech-to-brain entrainment by acoustic SNR and visual informativeness. Changes in speech entrainment
with the experimental factors were quantified using a GLM for the condition-specific speech MI based on the effects of SNR (A), visual
informativeness VIVN (B), and their interaction (SNRxVIVN) (C). The figures display the cortical-surface projection onto the Freesurfer
template (proximity = 10 mm) of the group-level significant statistics for each GLM effect (FWE = 0.05). Graphs show the average speech
MI values for each condition (mean ± SEM), for local and global (red asterisk) of the T maps. Lines indicate the across-participant average
regression model and numbers indicate the group-average standardized regression coefficient for SNR in the VI and VN conditions. (D) T
maps illustrating the opposite SNR effects within voxels with significant SNRxVIVN effects. MI graphs for the peaks of these maps are
shown in (C) (IFGor-R and SFG-R = global T peaks for SNR effects in VI and VN, respectively). (E) Location of global and local seeds of GLM
T maps, used for the analysis of directed connectivity. (F) Correlation between condition-specific behavioural performance and speech
MI (perform. r) and between visual enhancement of performance and MI (vis. enhanc. r; see inset) in pSTG-R and IFGt-R. error-bars = ±
SEM. See also Tables 1 and 3.

et al., 2003). Indeed, the average syllabic rate was 212 syllables per minute in the present material,112

corresponding to about 3.5 Hz. Across frequencies, MI was strongest in bilateral auditory cortex and113

more extendedwithin the right hemisphere (Fig. S1B). PeakMI valueswere significantly higher in the114
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Table 1. Condition effects on speech MI. The table lists global and local peaks in the GLM T-maps. Anatomical
labels and Brodmann areas are based on the AAL and Talairach atlases. 𝛽 = standardized regression coefficient;
SEM = standard error of the participant average.

Anatomical Brodmann MNI GLM effect Frequency T 𝛽𝛽𝛽
label area coordinates Band (18) (SEM)

HG-R 42 64 -20 12 VIVN 0.25–1 Hz 4.62 0.10(0.15)
pSTG-R 22 48 -30 8 SNR 1–4 Hz 4.46 0.48(0.08)
SMG-R 40 58 -30 38 SNR 1–4 Hz 3.9 0.29(0.09)
PMC-L 6 -54 0 32 VIVN 1–4 Hz 3.81 0.62(0.20)
IFGt-R 46 42 34 2 SNRxVIVN 0.25–1 Hz 3.62 0.66(0.15)
IFGop-R 47 50 18 2 SNR 1–4 Hz 4.94 0.36(0.08)
IFGor-R 47 30 26 -16 SNR in VI 0.25–1 Hz 5.04 0.48(0.09)
SFG-R 6 12 30 58 SNR in VN 0.25–1 Hz -3.54 -0.44(0.10)
VC-R 17/18 18 -102 -4 VIVN 1–4 Hz 6.01 0.72(0.15)

right compared to the left hemisphere at frequencies below 12 Hz (paired t-tests; T(18) ≥ 3.1, p ≤ 0.043115

Bonferroni corrected), and did not differ at higher frequencies (T(18) ≤ 2.78, p ≥ 0.08). Importantly,116

we observed significant speech-to-brain entrainment not only within temporal cortices but across117

multiple regions in the occipital, frontal and parietal lobes, consistent with the notion that speech118

information is represented also within motor and frontal regions (Bornkessel-Schlesewsky et al.,119

2015; Du et al., 2014; Skipper et al., 2009).120

Speech entrainment is modulated by SNRwithin and beyond auditory cortex121

To determine the regions where acoustic signal quality and visual context affect the encoding of122

speech we modelled the condition-specific speech MI values based on effects of acoustic signal123

quality (SNR), visual informativeness (VIVN), and their interaction (SNRxVIVN). Random-effects signif-124

icance was tested using a permutation procedure and cluster enhancement, correcting for multiple125

comparisons along all relevant dimensions. Effects of experimental factors emerged in multiple re-126

gions at frequencies below 4 Hz (Fig. 3). Increasing the acoustic signal quality (SNR; Fig. 3A) resulted127

in stronger speech MI in the right auditory cortex (1–4 Hz; local peak T statistic = 4.46 in posterior supe-128

rior temporal gyrus; pSTG-R; Table 1), right parietal cortex (local peak T = 3.90 in supramarginal gyrus;129

SMG-R), and right dorso-ventral frontal cortex (IFGop-R; global peak T = 4.94). We also observed sig-130

nificant positive SNR effects within the right temporo-parietal and occipital cortex at 12–18 Hz (local131

peak right lingual gyrus, T = 5.12). However, inspection of the participant-specific data suggested that132

this effect was not reliable (for only 58% of participants showed an speech MI increase with SNR, as133

opposed to a minimum of 84% for the other SNR effects), possibly because the comparatively lower134

power of speech envelope fluctuations at higher frequencies (c.f. Fig. 1A), and hence this effect is135

not discussed further.136

Visual context reveals distinct strategies for handling speech in noise in premotor, su-137

perior and inferior frontal cortex138

Contrasting informative and un-informative visual contexts revealed stronger speech MI when see-139

ing the speakers face (VI) at frequencies below 4 Hz in both hemispheres (Fig. 3B): the right temporo-140

parietal cortex (0.25–1 Hz; HG; T = 4.62), bilateral occipital cortex (1–4Hz; right visual cortex; VC-R; global141

T peak = 6.01) and left premotor cortex (1–4 Hz; PMC-L; local T peak = 3.81). Interestingly, the condition-142

specific pattern of MI for both VC-L and PMC-L were characterized by an increase in speech MI with143

decreasing SNR during the VI condition, pointing to a stronger visual enhancement during more144

adverse listening conditions.145

Since visual benefits for perception emerge mostly when acoustic signals are degraded (Fig. 2,146

Ross et al., 2007; Sumby and Pollack, 1954), the interaction of acoustic and visual factors provides147
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Figure 4. Directed causal connectivity within the speech-entrained network. Directed connectivity between seeds of interest (c.f. Fig.
3E) was quantified using Directed Information (DI). (A) Maximum significant condition-average DI across lags (FWE = 0.05 across lags;
white = no significant DI). (B) Significant condition effects (GLM for SNR, VIVN or their interaction) on DI (FWE = 0.05 across speech/brain
lags and seed/target pairs). Bar graphs display condition-specific DI values for each significant GLM effect along with the
across-participants average regression model (lines). Numbers indicate the group-average standardized betas for SNR in the VI and VN
conditions, averaged across lags associated with a significant GLM effect. (C) Correlation between behavioural performance and
condition-specific DI (perform. r) and between visual enhancement of performance and DI (vis. enhanc. r) from HG-R to IFGt-R and from
IFGop-R to pSTG-R. error-bars = ± SEM. See also Tables 2–3 and Fig. S2.

a crucial test for audio-visual integration. We found significant interactions in the 0.25–1 Hz band in148

the right dorso-ventral frontal lobe, which peaked in the pars triangularis (IFGt-R; T = 3.62; Fig. 3C).149

Importantly, investigating the SNR effect at these voxels revealed two distinct strategies for handling150

speech in noise dependent on visual context (Fig. 3D): During VI speech MI increased with SNR in151

ventral frontal cortex (peak T for SNR in pars orbitalis; IFGor-R; T = 5.04), while in dorsal frontal cortex152

speechMIwas strongest at low SNRs during VN (peak T in superior frontal gyrus; SFG-R; T = -3.54). This153

demonstrates distinct functional roles of ventral and dorsal prefrontal regions in speech encoding154

and reveals a unique role of superior frontal cortex for enhancing speech representations in a poorly155

informative context, such as the absence of visual information in conjunction with poor acoustic156

signals.157

Directed causal connectivity within the speech network158

The diversity of the patterns of speech entrainment in temporal, premotor and inferior frontal re-159

gions across conditions could arise from the individual encoding properties of each region, or from160

changes in functional connectivity between regions with conditions. To directly test this, we quanti-161
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Table 2. Analysis of directed connectivity (DI). The table lists connections with significant condition-averaged
DI, and condition effects on DI. SEM = standard error of participant average; 𝛽 = standardized regression
coefficients. T(18) = maximum T statistic within significance mask.

DI Condition effects (GLM)

Seed Target T(18) Effect T(18) 𝛽𝛽𝛽(SEM)

HG-R PMC-L 3.38 SNRxVIVN -3.01 -0.14(0.05)
HG-R IFGt-R 3.03 SNR 3.32 0.18(0.05)
HG-R IFGopR 4.54 SNR 3.19 0.18(0.05)

pSTG-R IFGt-R 3.39
SNR 3.91 0.22(0.06)
VIVN 4.57 0.59(0.22)

pSTG-R IFGopR 4.12 SNR 3.31 0.20(0.06)
SFG-R VC-R 4.4 SNRxVIVN 3.69 0.12(0.03)
IFGt-R IFGopR 3.76 VIVN 3.56 0.31(0.17)
IFGopR pSTG-R 4.16 SNR 4.65 0.17(0.04)

fied the directed causal connectivity between regions of interest extracted from the above analysis162

(Fig. 3E). To this end we used Directed Information (DI), also known as Transfer Entropy, an infor-163

mation theoretic measure of Wiener-Granger causality (Massey, 1990; Schreiber, 2000). We took164

advantage of previous work that made this measure statistically robust when applied to neural data165

(Besserve et al., 2015; Ince et al., 2016a).166

We observed significant condition-averaged DI between multiple nodes of the speech network167

(FWE = 0.05; Fig. 4A and Fig. S2A). This included among others the feed-forward pathways of the ven-168

tral and dorsal auditory streams, such as from auditory cortex (HG-R) and superior temporal regions169

(pSTG-R) to premotor (PMC-L) and to inferior frontal regions (IFGt-R, IFGop-R), from right parietal170

cortex (SMG-R) to premotor cortex (PMC-L), as well as feed-back connections from premotor and171

inferior frontal regions to temporal regions. In addition, we also observed significant connectivity172

between frontal (SFG-R) and visual cortex (VC).173

We then asked whether and where connectivity changed with experimental conditions (Fig. 4B,174

Table 2 and Fig. S2B). Within the right ventral stream feed-forward connectivity from the tempo-175

ral lobe (HG-R, pSTG-R) to frontal cortex (IFGt-R, IFGop-R) was enhanced during high acoustic SNR176

(FWE = 0.05; T(18) ≥ 3.1). More interestingly, this connectivity was further enhanced in the presence of177

an informative visual context (pSTG-R → IFGt-R, positive SNRxVIVN interaction, T = 4.57), demonstrat-178

ing a direct influence of visual context on the propagation of speech information along the ventral179

stream. Interactions of acoustic and visual context on connectivity were also found from auditory180

(HG-R) to premotor cortex (PMC-L, negative interaction; T = -3.01). Here connectivity increased with181

increasing SNR in the absence of visual information and increased with decreasing SNR during an182

informative context, suggesting that visual information changes the qualitative nature of auditory-183

motor interactions. An opposite interaction was observed between the frontal lobe and visual cortex184

(SFG-R → VC-R, T = 4.40). Finally, we found that feed-back connectivity along the ventral pathway185

was significantly stronger during high SNRs (IFGt-R → pSTG-R; T = 4.16).186

Do Speech entrainment or connectivity shape behavioural performance?187

We performed two additional analyses to test whether and where changes in the local represen-188

tation of speech information (speech-MI) or directed connectivity (DI) contribute to explaining the189

behavioural benefits (Fig. 2). First, we asked where speech-MI/DI relates to performance changes190

across all experimental conditions (incl. changes in SNR). This revealed a significant correlation be-191

tween condition-specific word-recognition performance and the strength of speech MI in pSTG-R192

and IFGt - R (r ≥ 0.28; FWE = 0.05; Table 3 and Fig. 3F), suggesting that stronger entrainment in193
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Table 3. Association of behavioural performancewith speech entrainment and connectivity. Performance:
T statistic and average of participant-specific correlation (SEM) between behavioural performance and speech
MI / DI. Visual enhancement: correlation between SNR-specific behavioural benefit (VI-VN) and the respective
difference in speech-MI or DI. * FWE = 0.05 corrected for multiple comparisons.

Speech MI

Performance Visual enhancement

T(18) r(SEM) T(18) r(SEM)

HG-R 1.27 0.12(0.08) 0.21 0.04(0.12)
pSTG-R 3.43 * 0.27(0.07) 0.53 0.05(0.10)
SMG-R 2.35 0.19(0.08) -0.39 -0.02(0.10)
PMC-L 0.47 0.04(0.07) 0.13 0.03(0.12)
SFG-R -0.47 -0.03(0.07) 1.61 0.17(0.11)
IFGt-R 3.09 * 0.24(0.08) 1.25 0.15(0.12)
IFGopR 2.38 0.20(0.08) -0.25 -0.01(0.12)
VC-R 1.55 0.14(0.09) -0.82 -0.16(0.11)

Directed connectivity

Performance Visual enhancement

Seed Target T(18) r(SEM) T(18) r(SEM)

HG-R IFGt-R 4.83 * 0.31(0.07) 2.55 * 0.28(0.11)
HG-R IFGopR 3.19 * 0.24(0.07) 1.86 0.31(0.17)
HG-R PMC-L 0.90 0.06(0.06) -0.07 -0.01(0.14)
pSTG-R IFGt-R 4.28 * 0.27(0.06) 1.28 0.16(0.12)
pSTG-R IFGopR 3.59 * 0.29(0.08) 1.82 0.32(0.17)
IFGt-R IFGopR 1.11 0.08(0.07) 2.27 0.33(0.14)
IFGopR pSTG-R 4.51 * 0.37(0.08) 2.55 * 0.37(0.15)
SFG-R VC-R -0.04 0.00(0.08) 0.90 0.17(0.18)

the ventral stream facilitates comprehension. This hypothesis was further corroborated by a signif-194

icant correlation of connectivity along the ventral stream with behavioural performance, both in195

feed-forward (HG-R → IFGt-R; pSTG-R → IFGt-R/IFGop-R; r ≥ 0.27, Table 3) and feed-back directions196

(IFGop-R → pSTG-R; r=0.37). The enhanced quality of speech perception during favourable listening197

conditions hence results from enhanced speech encoding and the supporting network connections198

along the temporal-frontal axis.199

Second, we asked whether and where the improvement in behavioural performance with an in-200

formative visual context (VI-VN) correlates with an enhancement in speech encoding or connectivity.201

This revealed no significant correlation between the visual enhancement of local speech representa-202

tions and perceptual benefits (all p > 0.05). However, both feed-forward (HG-R → IFGt-R; r = 0.28, p <203

0.05; Fig. 4C) and feed-back connections (IFGop-R → pSTG-R; r = 0.37) along the ventral stream were204

significantly enhanced during an informative visual context, suggesting that changes in functional205

connectivity contribute significantly to shaping speech intelligibility.206

Discussion207

The present study provides a comprehensive picture of how acoustic signal quality and visual con-208

text interact to shape the encoding of speech information and the directed functional connectivity209

along speech-sensitive cortex. Our results reveal a dominance of feed-forward pathways from au-210

ditory regions to inferior frontal cortex under favourable conditions, such as during high SNR. We211
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also demonstrate the visual enhancement of speech encoding in auditory and premotor cortex, as212

well as non-trivial interactions of acoustic quality and visual context in superior and inferior frontal213

regions. These patterns of local encoding were accompanied by changes in directed connectivity214

along the ventral pathway and from auditory to premotor cortex. Yet, the behavioural benefit aris-215

ing from seeing the speaker’s face was not related to any site-specific visual enhancement of local216

speech encoding. Rather, changes in directed functional connectivity along the ventral stream were217

predictive of the behavioural benefit.218

Entrained speech representations in temporal, parietal and frontal lobes219

We observed functionally distinct patterns of speech-to-brain entrainment along the auditory path-220

ways. Previous studies on speech entrainment largely focused on the auditory cortex, where en-221

trainment is strongest (Ding and Simon, 2013; Gross et al., 2013; Keitel et al., 2017; Mesgarani and222

Chang, 2012). This was in part due to the difficulty to separate distinct processes reflecting entrain-223

ment when contrasting only few experimental conditions (e.g. forward and reversed speech, Ding224

and Simon, 2012; Gross et al., 2013). Based on the susceptibility to changes in acoustic signal qual-225

ity and visual context we here establish entrainment as a ubiquitous mechanism reflecting distinct226

speech representations along auditory pathways.227

Speech entrainment was reduced with decreasing acoustic SNR in temporal, parietal and ven-228

tral prefrontal cortex, directly reflecting the reduction in behavioural performance in challenging229

environments. In contrast, entrainment was enhanced during low SNR in superior frontal and pre-230

motor cortex. While there is strong support for a role of frontal and premotor regions in speech231

analysis (Du et al., 2014; Evans and Davis, 2015; Heim et al., 2008; Meister et al., 2007; Morillon232

et al., 2015; Rauschecker and Scott, 2009; Skipper et al., 2009; Wild et al., 2012), most evidence233

comes from stimulus-evoked activity rather than signatures of neural speech encoding. We directly234

demonstrate the specific enhancement of frontal (PMC, SFG) speech representations during chal-235

lenging conditions. This enhancement is not directly inherited from the temporal lobe, as temporal236

regions exhibited either no visual facilitation (pSTG) or visual facilitation without an interaction with237

SNR (HG).238

The effects of experimental conditions dominated on the right hemisphere. Such a right domi-239

nance of speech entrainment is in agreementwith previous studies (Bourguignonet al., 2013; Fonte-240

neauetal., 2015;Grossetal., 2013;VanderGhinstet al., 2016) andwith the hypothesis that right tem-241

poral regions extract acoustic information predominantly on the syllabic and prosodic time scales242

(GiraudandPoeppel, 2012;Poeppel, 2003), exactly those time scaleswhere speech-to-brain entrain-243

ment is strongest in the present and previous data (Gross et al., 2013; Keitel et al., 2017).244

Multisensory enhancement of speech encoding in the frontal lobe245

Visual information from the speakers face provides multiple cues that enhance intelligibility. In sup-246

port of a behavioural multisensory benefit we found stronger entrainment during an informative247

visual context in multiple bilateral regions. First, we replicated the visual enhancement of audi-248

tory cortical representations (HG, Besle et al., 2008; Kayser et al., 2010; Zion Golumbic et al., 2013).249

Second, visual enhancement of an acoustic speech representation was also visible in early visual250

areas, as suggested by prior studies (Nath and Beauchamp, 2011; Schepers et al., 2015). While we251

can’t rule out that this effect is in part mediated by the correlations between acoustic and visual252

speech cues, we found that the visual enhancement was strongest when SNR was low and hence is253

better explained by top-down influences (Vetter et al., 2014). Third, speech representations in ven-254

tral prefrontal cortex were selectively involved during highly reliable multisensory conditions and255

were reduced in the absence of the speakers face. These findings are in line with suggestions that256

the IFG facilitates comprehension (Alho et al., 2014; Evans and Davis, 2015; Hasson et al., 2007b;257

Hickok and Poeppel, 2007) and implements multisensory processes (Callan et al., 2014, 2003; Lee258

andNoppeney, 2011), possibly by providing amodal phonological, syntactic and semantic processes259

(Clos et al., 2014; Ferstl et al., 2008; McGettigan et al., 2012). Previous studies often reported en-260
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hanced IFG response amplitudes under challenging conditions (Guediche et al., 2013). In contrast,261

by quantifying the fidelity of speech representations we here show that these are generally stronger262

during favourable SNRs. This discrepancy is not necessarily surprising, if one assumes that IFG rep-263

resentations are derived from those in the temporal lobe, which are also more reliable during high264

SNRs. Noteworthy, however, is the finding that representations within ventral IFG are selectively265

stronger during an informative visual context. We thereby directly confirm the hypothesis that IFG266

speech encoding is enhanced by visual context.267

Furthermore, we demonstrate the visual enhancement of speech representations in premotor268

regions, which could implement the mapping of audio-visual speech features onto articulatory rep-269

resentations (Meister et al., 2007; Morillon et al., 2015; Fernández et al., 2015; Skipper et al., 2009;270

Wilson et al., 2004). We show that that this enhancement is inversely related to acoustic signal qual-271

ity. While this observation is in agreement with the notion that perceptual benefits are strongest272

under adverse conditions (Ross et al., 2007; Sumby and Pollack, 1954), there was no significant cor-273

relation between the visual enhancement of premotor encoding and behavioural performance. Our274

results thereby deviate from previous work that has suggested a driving role of premotor regions in275

shaping intelligibility (Alho et al., 2014; Osnes et al., 2011), and we rather support a modulatory influ-276

ence of auditory-motor interactions (Alhoet al., 2014; Callanet al., 2004;HickokandPoeppel, 2007;277

Krieger-Redwoodetal., 2013;Morillonet al., 2015). For example, in a study quantifying dynamic rep-278

resentations of visual speech signals (lip movements) we recently found that left premotor activity279

was significantly predictive of behavioural performance (Park et al., 2016). One explanation for this280

discrepancy may be presence of a memory component in our behavioural task, which may engage281

other brain regions (e.g. IFG) more than other tasks. Given that the premotor effects were restricted282

to the theta band, which is associated with syllabic (> 3 Hz) rather than intonational (< 1 Hz) struc-283

ture (Giraud and Poeppel, 2012; Greenberg et al., 2003), our results also suggest this region carries284

syllabic rather than prosodic representations (Du et al., 2014; Heim et al., 2008; Krieger-Redwood285

et al., 2013; Osnes et al., 2011).286

Finally, our results highlight an interesting role of the superior frontal gyrus, where entrainment287

was s‘trongest when sensory information was most impoverished (low SNR, visual not informative)288

or when the speakers face was combined with clear speech (high SNR, visual informative). Supe-289

rior frontal cortex has been implied in high level inference processes underlying comprehension,290

sentence level integration or the exchange with memory (Ferstl et al., 2008; Hasson et al., 2007a;291

Yarkoni et al., 2008) and is sometimes considered part of the broader semantic network (Binder292

et al., 2009; Gow and Olson, 2016; Price, 2012). Our data show that the SFG plays a critical role for293

speech encoding under challenging conditions at the supra-syllabic time scale, possibly by mediat-294

ing sentence-level integration during low SNRs or the comparison of visual prosody with acoustic295

inputs in multisensory contexts.296

Multisensory behavioural benefits arise from distributed networkmechanisms297

Tounderstandwhether the condition-specific patterns of local speech representations emergewithin298

each region, or whether they are possibly established by network interactions we investigated the299

directed functional connectivity between regions of interest. While many studies have assessed the300

connectivity between auditory regions (e.g. Abrams et al., 2013; Chu et al., 2013; Fonteneau et al.,301

2015; Park et al., 2015), few have quantified the behavioural relevance of these connections (Alho302

et al., 2014).303

We observed significant intra-hemispheric connectivity between right temporal, parietal and304

frontal regions, in line with the transmission of speech information from auditory cortices along the305

auditory pathways (Bornkessel-Schlesewsky et al., 2015; Hickok, 2012; Poeppel, 2014). Support-306

ing the idea that acoustic representations are progressively transformed along these pathways we307

found that the condition-specific patterns of functional connectivity differed systematically along308

the ventral and dorsal streams. While connectivity along the ventral stream was predictive of be-309

havioural performance and strongest during favourable listening conditions, the inter-hemispheric310
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connectivity to left premotor cortex was strongest during adverse multisensory conditions. Our re-311

sults therefore suggest that premotor representations are informed by auditory regions (HG, pSTG)312

rather than being driven by the frontal lobe, an interpretation that is supported by previous work313

(Alho et al., 2014; Gow and Olson, 2016; Osnes et al., 2011).314

Across changes in visual context and acoustic SNR behavioural performance was supported315

both by an enhancement of speech representations along multiple regions of the ventral pathway316

and increases in their functional connectivity. These increases in functional connectivity emerged317

both along feed-forward and feed-back directions between temporal and inferior frontal regions,318

and were strongest (in effect size) along the feed-back route. This underlines the hypothesis that319

recurrent processing, rather than a simple feed-forward sweep, is central to speech intelligibility320

(Bornkessel-Schlesewsky et al., 2015; Hickok, 2012; Poeppel, 2014). Central to the scope of the321

present study, however, we found that no single region-specific effect could explain the visual be-322

havioural benefit. Rather, the benefit arising from seeing the speakers face was significantly corre-323

lated with the enhancement of functional connectivity along the ventral stream (HG → IFG → pSTG).324

Our results hence point to a distributed origin of the visual enhancement of speech intelligibility.325

As proposed a decade ago (Besle et al., 2008; Ghazanfar et al., 2005; Ghazanfar and Schroeder,326

2006; Kayser et al., 2010; Zion Golumbic et al., 2013) this visual enhancement involves early audi-327

tory cortices, but as we showhere, the behavioural benefit also relies on the recurrent transformation328

of speech representations between temporal and frontal regions. One interpretation of this in the329

context of predictive coding models is that an informative visual context facilitates the correction330

of prior predictions about the expected stimulus by incoming sensory evidence, which would be331

visible both in feed-forward and feed-back connectivity (Arnal andGiraud, 2012; Bastos et al., 2012).332

Our results provide a network view on the dynamic speech representations in multisensory en-333

vironments. While premotor and superior frontal regions are specifically engaged in the most chal-334

lenging environments the visual enhancement of comprehension at intermediate SNRs ismediated335

by interactions of the core speech regions along the ventral pathway. Such a distributed neural ori-336

gin of multisensory benefits is in line with the notion of a hierarchical organization of multisensory337

processing in the brain (Lee and Noppeney, 2011; Rohe and Noppeney, 2015), and the idea that338

comprehension is shaped by network connectivity more than the engagement of particular brain339

regions (Abrams et al., 2013).340

Materials andmethods341

Nineteen right handed healthy adults (10 females; age from 18 to 37) participated in this study. All342

participants were tested for normal hearing, were briefed about the nature and goal of this study,343

and received financial compensation for their participation. The studywas conducted in accordance344

with the Declaration of Helsinki and was approved by the local ethics committee (College of Science345

and Engineering, University of Glasgow). Written informed consent was obtained from all partici-346

pants.347

Stimulusmaterial348

The stimulus material consisted of audio-visual recordings based on text transcripts taken from pub-349

licly available TED talks also used in a previous study (Kayser et al., 2015b, Fig. 1A). Acoustic (44.1 kHz350

sampling rate) and video recordings (25 Hz frame rate, 1920 by 1080 pixels) were obtained while351

a trained male native English speaker narrated these texts (Kayser et al., 2015a). The root mean352

square (RMS) intensity of each audio recording was normalized using 6 s sliding windows to ensure353

a constant average intensity. Across the eight texts the average speech rate was 160 words (range354

138–177) per minute, and the syllabic rate was 212 syllables (range 192–226) per minute.355

Experimental design and stimulus presentation356

We presented each of the eight texts as continuous 6 minute sample, while manipulating the acous-357

tic quality and the visual relevance in a block design within each text (Fig. 1B). The visual relevance358
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was manipulated by either presenting the video matching the respective speech (visual informative,359

VI) or presenting a 3 s babble sequence that was repeated continuously (visual not informative, VN),360

and which started and ended with the mouth closed to avoid transients. The signal to noise ratio361

(SNR) of the acoustic speech was manipulated by presenting the speech on background cacophony362

of natural sounds and scaling the relative intensity of the speech while keeping the intensity of the363

background fixed. We used relative SNR values of +8, +6, +4 and +2 dBRMS intensity levels. The acous-364

tic background consisted of a cacophony of naturalistic sounds, created by randomly superimposing365

various naturalistic sounds from a larger database (using about 40 sounds at each moment in time,366

Kayser et al., 2016). This resulted in a total of 8 conditions (four SNR levels; visual informative or irrel-367

evant) that were introduced in a block design (Fig. 1B). The SNR changed from minute to minute in368

a pseudo-random manner (12 one minute blocks per SNR level). Visual relevance was manipulated369

within 3 minute sub-blocks. Texts were presented with self-paced pauses. Subjects performed a de-370

layed comprehension tasks after each block, whereby they had to indicate whether a specific word371

(noun) was mentioned in the previous text (6 words per text) or not (6 words per text) in a two alter-372

native forced choice task. The words chosen from the presented text were randomly selected and373

covered all eight conditions. The average performance was 73±2% correct (mean and SEM across374

subjects), showing that they indeed paid attention to the stimulus. Behavioural performance was375

averaged within each condition, and analysed using a repeated measures ANOVA, with SNR and376

VIVN as within-subject factors. The stimulus presentation was controlled using the Psychophysics377

toolbox in Matlab (Brainard, 1997). Acoustic stimuli were presented using an Etymotic ER-30 tube-378

phone (tube length = 4 m) at 44.1 kHz sampling rate and an average intensity of 65 dB RMS level,379

calibrated separately for each ear. Visual stimuli were presented in grey-scale and projected onto a380

translucent screen at 1280 × 720 pixels at 25 fps covering a field of view of 41 × 33 degrees.381

Pre-processing of the speech envelope382

We extracted the envelope of the speech signal (not the speech plus background mixture) by com-383

puting the wide-band envelope at 150 Hz temporal resolution as in previous work (Chandrasekaran384

et al., 2009;Kayser et al., 2015b). The speech signal was filtered (4th order Butterworth filter; forward385

and reverse) into six frequency bands (100 Hz–4 kHz) spaced to cover equal widths on the cochlear386

map. The wide-band envelope was defined as the average of the Hilbert envelopes of these band-387

limited signals (c.f. Fig. 1A).388

MEG data collection389

MEG recordings were acquiredwith a 248-magnetometers whole-headMEG system (MAGNES 3600390

WH, 4-D Neuroimaging) at a sampling rate of 1017.25 Hz. Participants were seated upright. The391

position of five coils, marking fiducial landmarks on the head of the participants, was acquired at392

the beginning and at the end of each block. Across blocks, and participants, the maximum change393

in their position was 3.6 mm, on average (STD = 1.2 mm).394

MEG pre-processing395

Analyses were carried out in Matlab using the Fieldtrip toolbox (Oostenveld et al., 2010), SPM12,396

and code for the computation of information-theoretic measures (Ince et al., 2016a). Block-specific397

data were pre-processed separately. Infrequent SQUID jumps (observed in 1.5% of the channels, on398

average) were repaired using piecewise cubic polynomial interpolation. Environmental magnetic399

noise was removed using regression based on principal components of reference channels. Both400

the MEG and reference data were filtered using a forward-reverse 70 Hz FIR low-pass (-40 dB at401

72.5 Hz); a 0.2 Hz elliptic high-pass (-40 dB at 0.1 Hz); and a 50 Hz FIR notch filter (-40 dB at 50 ±402

1Hz). Across participants and blocks, 7 MEG channels were discarded as they exhibited a frequency403

spectrum deviating consistently from the median spectrum (shared variance < 25%). For analysis404

signals were resampled to 150Hz, high-pass filtered at 0.2 Hz (forward-reverse elliptic filter). ECG and405
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EOG artefacts were removed using ICA in fieldtrip (runica on 40 principal components), and were406

identified based on the time course and topography of IC components (Hipp and Siegel, 2013).407

Structural data and source localization408

High resolution anatomical MRI scans were acquired for each participant (voxel size = 1 mm3) and co-409

registered to the MEG data using a semi-automated procedure. Anatomicals were segmented into410

grey and white matter and cerebro-spinal fluid (Ashburner and Friston, 2005). The parameters for411

the affine registration of the anatomical to the MNI template were estimated, and used to normalize412

the greymatter probabilitymaps of each individual to theMNI space. A groupMNI source-projection413

grid with a resolution of 3 mm was prepared including only voxels associated with a group-average414

grey-matter probability of at least 0.25. The projection grid excluded various subcortical structures,415

identified using the AAL atlas (e.g., vermis, caudate, putamen and the cerebellum). Leadfields were416

computed based on a single shell conductor model. Time-domain projections were obtained on a417

block-by-block basis for each frequency band using LCMV spatial filters (regularization = 5%) along418

the dipole orientation of maximum variance.419

Analysis of speech to brain entrainment420

Motivatedby previouswork (Grossetal., 2013;Ngetal., 2013), we considered eight partly overlapping421

frequency bands (0.25–1 Hz, 1–4 Hz, 4–8 Hz, 8–12 Hz, 12–18 Hz, 18–24 Hz, 24–36 Hz, and 30–48 Hz), and422

isolated them from the full-spectrum MEG and speech envelope signals using a forward-reverse423

4th order Butterworth filter (magnitude of frequency response at band limits = -6 dB). Entrainment424

was quantified using the mutual information (MI) between the filtered MEG and speech-envelope425

time courses (Cogan andPoeppel, 2011; Gross et al., 2013; Kayser et al., 2015b; Keitel et al., 2017; Ng426

et al., 2012). The MI was calculated using a recently developed bin-less approach based on statistical427

copulas, which provides greater sensitivity thanmethods based on binned signals (Ince et al., 2016a).428

To quantify the entrainment of brain activity to the speech envelope we first determined the429

optimal time lag between MEG signals and the acoustic stimulus for individual bands and source430

voxels using a permutation-based RFX estimate. Lag estimates were obtained based on a quadratic431

fit, excluding lags with insignificant MI (permutation-based FDR = 0.01). Voxels without an estimate432

were assigned the median estimate within the same frequency band, and volumetric maps of the433

optimal lags were smoothed with a Gaussian (FWHM = 10 mm). Speech MI was then estimated for434

eachbandand voxel using the optimal lag. The significance of group-level speechMI assessedwithin435

a permutation-based RFX framework that relied on MI values corrected for bias at the single-subject436

level, and on cluster mass enhancement of the test statistics corrected for multiple comparisons at437

the second level (Maris and Oostenveld, 2007). At the single-subject level, null distributions were438

obtained by shuffling the assignment of speech and MEG, independently for each participant, i.e.439

by permuting the 6 speech segments within each of the 8 experimental conditions (using the same440

permutation across bands). Participant-specific bias-corrected speech MI values were then defined441

as the actual MI minus the median MI across all 720 possible null permutations. Group-level RFX442

testing relied on T-statistics for the null-hypothesis that the participant-averaged bias-corrected MI443

was significantly larger than zero. To this end we generated 10,000 samples of the group-averaged444

MI from theparticipant-specific null distributions, used cluster-mass enhancement across voxels and445

frequencies (cluster-forming threshold T(18) = 2.1) to extract the maximum cluster T across frequency446

bands and voxels, and considered as significant a cluster-enhanced T statistic higher than the 95th447

percentile of the permutation distribution (corresponding to FWE = 0.05).448

To determine whether speech entrainment was modulated by the experimental factors we used449

a permutation-based RFX GLM framework (Winkler et al., 2014). For each participant individually450

we considered the condition-specific bias-corrected MI averaged across repetitions and estimated451

the coefficients of a GLM for predicting MI based on SNR (2, 4, 6, 8 dB), VIVN (1 = Visual Informative; -1452

= Visual Not informative), and their interaction. We computed a group-level T-statistic for assessing453

the hypothesis that the across-participant average GLM coefficient was significantly different than454
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zero, using cluster-mass enhancement across voxels and frequencies. Permutation testing relied on455

the Freedman-Lane procedure (Freedman and Lane, 1983). Independently for each participant and456

GLM effect, we estimated the parameters of a reduced GLM that includes all of the effects but the457

one to be tested and extracted the residuals of the prediction. We then permuted the condition-458

specific residuals and extracted the GLM coefficient for the effect of interest estimated for these459

reshuffled residuals. We obtained a permutation T statistic for the group-average GLM coefficient460

of interest using the max-statistics. We considered as significant T values whose absolute value was461

higher than the 95th percentile of the absolute value of 10,000 permutation samples, correcting for462

multiple comparisons across voxels / bands (FWE = 0.05). We only considered significant GLM effects463

in conjunction with a significant condition-average entrainment.464

Analysis of directed functional connectivity465

To quantify directed functional connectivity we relied on the concept of Wiener-Granger causality466

and its information theoretic implementation known as Transfer Entropy or directed information467

(DI, Massey, 1990; Schreiber, 2000; Vicente et al., 2011; Wibral et al., 2011). Directed information in468

its original formulation (Massey, 1990, termed DI∗ here) quantifies causal connectivity by measuring469

the degree to which the past of a seed predicts the future of a target signal, conditional on the past470

of the target, defined at a specific lag (𝜏𝐵𝑟𝑎𝑖𝑛):471

𝐷𝐼∗ (𝜏𝐵𝑟𝑎𝑖𝑛) = 𝐼 (𝑇 𝑎𝑟𝑔𝑒𝑡𝑡; 𝑆𝑒𝑒𝑑𝑡−𝜏 |𝑇 𝑎𝑟𝑔𝑒𝑡𝑡−𝜏) (1)

While DI∗ provides a measure of the overall directed influence from seed to target, it can be sus-472

ceptible to statistical biases arising from limited sampling, common inputs or signal auto-correlations473

(Besserve et al., 2015, 2010; Ince et al., 2016a; Panzeri et al., 2007). We regularized and made this474

measure more conservative by subtracting out values of DI computed at fixed values of speech enve-475

lope. This subtraction removes terms -– including the statistical biases described above -– that can-476

not possibly carry speech information (because they are computed at fixed speech envelope). This477

results in an estimate that is statistically more robust, more conservative and more directly related478

to changes in the sensory input than classical transfer entropy (termed directed feature information479

in Ince et al., 2015, 2016a). Practically, DI was defined here as480

𝐷𝐼∗ (𝜏𝐵𝑟𝑎𝑖𝑛, 𝜏𝑆𝑝𝑒𝑒𝑐ℎ) = 𝐷𝐼∗ (𝜏𝐵𝑟𝑎𝑖𝑛) − 𝐷𝐼∗ (𝜏𝐵𝑟𝑎𝑖𝑛) |𝑆𝑝𝑒𝑒𝑐ℎ (𝜏𝑆𝑝𝑒𝑒𝑐ℎ) (2)

where DI∗|𝑆𝑝𝑒𝑒𝑐ℎ denotes the DI∗ conditioned on the speech envelope. Positive values of DI indicate481

directed functional connectivity between seed and target at a specific brain (𝜏𝐵𝑟𝑎𝑖𝑛) and speech lag482

(𝜏𝑆𝑝𝑒𝑒𝑐ℎ). The actual DI values were furthermore Z-scored against random effects to further enhance483

the robustness of this connectivity index, which facilitates statistical comparisons between condi-484

tions across subjects (Besserve et al., 2015). To this end DI, as estimated for each participant and485

connection from Eq. 2, was Z-scored against the distribution of DI values obtained from condition-486

shuffled estimates (using the same randomization procedure as for MI). DI was computed for speech487

lags between 0 and 500 ms and brain lags between 0 and 250 ms, at steps of one sample (1/150 Hz).488

We estimated DI on the frequency range of 0.25–8 Hz (forward-reverse 4th order Butterworth filter)489

and by considering the bivariate MEG response defined by the band-passed source signal and its490

first-order difference (Ince et al., 2016a,b). Seeds for the DI analysis were the global and local peaks491

of the GLM-T maps quantifying the SNR, VIVN and SNRxVIVN modulation of entrainment, and the492

SFG-R voxel characterized by the peak negative effect of SNR in the visual informative condition, for493

a total of 8 seeds (Table 1 and Fig. 3E). To test for the significance of condition-average DI we used the494

same permutation-based RFX approach as for speech MI, testing the hypothesis that bias-corrected495

DI > 0. We used 2D cluster-mass enhancement of the T statistics within speech/brain lag dimensions496

correcting for multiple comparisons across speech and brain lags (FWE = 0.05). To test for significant497

DI effects with experimental conditions we relied on the same GLM strategy as for MI effects, again498

with the same differences pertaining to cluster enhancement and comparison correction (FWE =499

0.05 across lags and seed/target pairs). We only considered DI modulations in conjunction with a500

significant condition-average DI.501
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Neuro-behavioural correlations502

We used a permutation-based RFX approach to assess (1) whether an increase in condition-specific503

speech-MI or DI was associated with an increase in behavioural performance, and (2) whether the504

visual enhancement (VI-VN) of MI or DI was associated with stronger behavioural gains. We focused505

on the 8 regions used as seeds for the DI analysis. For speech-MI we initially tested whether the506

participant-average Fisher Z-transformed correlation between condition-specific performance and507

speech-MI was significantly larger than zero. Uncorrected p-values were computed using the per-508

centile method, where FWE = 0.05 p-values corrected across regions were computed using maxi-509

mum statistics. We subsequently tested the positive correlation between SNR-specific visual gains510

(VI-VN) in speech-MI and behavioural performance using the same approach, but considered only511

those regions characterized by a significant condition-specific MI/performance association. For DI,512

we focused on those lags characterized by a significant SNR, VIVN, or SNRxVIVN DI modulation.513

Significance testing proceeded as for speech MI, except that Z-transformed correlations were com-514

puted independently for each lag and then averaged across lags (FWE = 0.05 corrected across all515

seed/target pairs).516
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Figure S1. Entrainment of rhythmic MEG activity to the speech envelope. (A) Projection of significant speech MI maps, which quantify
the entrainment of MEG source activity to the speech envelope, onto the Freesurfer template (FWE = 0.05; proximity = 10 mm;
surface-projected significant MI maps rescaled within volume from minimum significant MI to the 99.5th percentile of the surface
projection). (B) Peak MI in the two hemispheres as a function of frequency (mean ± SEM).
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Figure S2. Directed functional connectivity within the speech-entrained network. (A) Significant condition-averaged directed
information (DI) values between all seed-target pairs as a function of the speech (𝜏𝑆𝑝𝑒𝑒𝑐ℎ) and brain lags (𝜏𝐵𝑟𝑎𝑖𝑛). (B): Group-level statistical
maps for the GLM effects on DI of acoustic signal quality (SNR), visual informativeness (VIVN) and their interaction.
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