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 The experimental study of sonic interactions can elucidate one of the most important 

aspects of the design process:  “ How should the sonic interaction be structured to 

produce a target perceptual result or to induce a specific motor behavior of the user? ”  

Very similar questions are the object of basic research on the human processing of 

sensory events (e.g.,  “ What is the perceptual effect of this sound stimulus? ” ), and have 

spurred the development of a large number of experimental methods. This chapter is 

meant as an introductory guide to the behavioral methods for the experimental study 

of complex sound events and sonic interactions.   Table 5.1  reports a list of design 

questions that can be answered with each of the presented methods. Throughout this 

chapter, we reference a number of empirical studies of complex and naturalistic sounds 

based on the described methods. Interested readers can find in these studies more 

detailed descriptions of the various behavioral paradigms. 

 Studying sonic interactions in the laboratory implies focusing on conditions where 

the action or motor behavior of the participant influences the properties of the pre-

sented sounds. This generic definition encompasses a large number of everyday events: 

a sonic interaction can indeed be as simple as the playback of a sound following a 

button press (e.g., touch tones of a mobile phone). Sonic interactions can be tenta-

tively organized along a continuum of complexity according to the number of sound 

properties that can be modified by a change in the motor behavior of the user (see 

  figure 5.1 ). The generation of touch tones lies at one extreme of this continuum 

because the only property of a sound that can be modified by the user is its presence 

or absence (the same sound will be played back independently of large variations in 

the force exerted on the key). Examples of complex sonic interactions, in order of 

increasing complexity are the turning of a volume knob in a sound amplification 

system, the striking of an object with a hammer (e.g., Giordano, Avanzini, Wanderley, 

 &  McAdams [ 37 ]) and the crunching of potato chips (Zampini  &  Spence [ 154 ]), up 

to the perhaps most complex type of sonic interaction — conducting a symphonic 
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  Table 5.1 
Examples of questions answered with the methods described in this chapter  

Section and method  Examples of answered questions 

5.1: Psychophysical 
methods 

Can the user perceive each of the configurations of a sonic 
interaction? 

Can the user differentiate between configurations? 

5.2: Identification 
and categorization 

What naturalistic object is recognized in each of the configurations? 

What emotional category is recognized in a sonic artifact? 

5.3: Scaling and 
rating 

How does perceived effort vary between sonic feedbacks for robotic 
surgery applications? 

How should the user-controlled gain for sound level vary so as to 
produce a linear increase in perceived loudness? 

5.4: Dissimilarity 
estimation 

Which properties of a complex sonic interaction are most relevant 
to the user? 

Do different individuals focus on different attributes of the sensory 
events? 

5.5: Sorting  How many categories of perceived materials can a sound synthesis 
algorithm reproduce? 

What is the most typical configuration for each of the material 
categories? 

5.6: Verbalization  Which words capture the semantic correlates of a sonic interaction? 

What are the individual interactive strategies? Are there problems in 
the prototype design? 

5.7: Semantic 
differential 

Which configuration has the highest aesthetic and functional 
value? 

How do preference, perceived sound brightness, and perceived 
efficiency covary for these particular sonic interactions? 

5.8: Preference 
estimation 

Which configuration has the highest aesthetic and functional 
value? 

Which configuration is the least annoying? 

5.9: Continuous 
evaluation 

Do users ’  gestures map onto changes in the perceptual attributes of 
the sonic events? 

How does the emotional response to a complex sound vary in time? 

5.10: Multisensory 
contexts 

What influences most strongly preference for cars? The sound of its 
doors closing or their felt weight? 

Do sonic feedbacks significantly shorten the time it takes to park a 
car? 

5.11: Measurement 
of acoustical 
information 

What sound properties should be manipulated to induce a target 
perceptual result (e.g., maximize preference)? 

5.12: Motion capture  How do we use our body in interaction with a sonic artifact? 

How do gestures and artifacts mutually influence a sonic 
interaction? 
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orchestra (e.g., Kolesnik  &  Wanderley [ 74 ]). Importantly, a large number of experi-

mental methods can be adopted to study both simple and complex sonic interactions. 

For example, participants in the study by Giordano, Rocchesso, and McAdams [ 41 ] 

triggered with the click of a mouse the playback of sounds recorded by striking objects 

of different hardness, whereas participants in the study by Lederman [ 85 ] actively 

generated sounds by scraping a rough surface with their fingers. Nonetheless, both 

studies adopted the same method, ratings, to measure the perceived properties of the 

sound-generating objects (hardness and surface roughness, respectively).    

Another important distinction between studies of sonic interactions is the type of 

variable relevant to the experimenter. To make this distinction clear, it is helpful to 

summarize the various stages involved in the interactive production of sounds and 

in their perception (see   figure 5.2 ). In general, a sonic interaction begins with a motor 

behavior or action carried out on a mechanical system, a sound-generating object 

(e.g., slapping the membrane of a bongo drum with the hand). The action-induced 

displacements of the components of the mechanical system will ultimately result in 

the production of a sound, which constitutes a source of acoustical information for 

the listener. At the same time, the motor behavior itself and the sound-generating 

object will produce information for additional sensory systems: kinesthetic, tactile, 

and visual. All these types of sensory information will then trigger various physio-

logical and neural processes, resulting in conscious sensations, perceptions, and cog-

nitions. Eventually, the processing of sensory information will feed back into the 

planning and control of further sound-generating actions.    

The experimental study of sonic interactions can thus focus on four different types 

of variables: (1) quantitative measures of the motor behavior, as frequently measured 

Touchtones in

mobile phone

Adjusting music

playback volume 

Striking a pan

with a hammer

Crunching

potato chips

Conducting

symphonic orchestra

Presence/

absence

of sound

Loudness Loudness,

spectrum,

decay length

Loudness,

spectrum,

shape

of amplitude

envelope

Loudness,

spectrum,

shape

of amplitude

envelope,

attributes, etc.

Figure 5.1 
Variable complexity of everyday sonic interactions. With more complex interactions, changes in 

the motor behavior of the user lead to changes in a higher number of properties of the sound 

signal (from left to right). 
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interaction perceivable? Are two different settings of a designed sonic interaction 

perceptually equivalent? Throughout the section, we focus on a simple attribute of 

the sonic interaction: the loudness of the sound. This example could be easily trans-

lated to a variety of sonic interactions such as the perceived loudness of sound effects 

in a videogaming context. 

 Psychophysics is the study of the mapping from physical attributes of the stimuli 

(e.g., sound level), to attributes of the corresponding sensations (e.g., loudness; see 

Gescheider [ 35 ] for an excellent handbook of psychophysics methodology). Classical 

psychophysical methods are often concerned with the measurement of two sensory 

quantities: the absolute threshold, which is the smallest or highest detectable value 

of a stimulus attribute (e.g., the lowest detectable sound level), and the differential 

threshold, which is the smallest discriminable difference in a stimulus attribute (e.g., 

the smallest discriminable difference in level).  1   

 The  method of constant stimuli  has been widely used for measuring both absolute 

and differential thresholds. When measuring an absolute threshold (e.g., absolute 

threshold for sound level), participants are repeatedly presented with a small set of 

stimuli ranging from hardly perceivable (e.g., very low level) to clearly perceivable. 

Participants are asked if they detect the stimulus or not. When measuring a differential 

threshold, on each trial participants are presented with two stimuli: a standard stimu-

lus whose properties remain constant across all trials (e.g., a 60 dB SPL sound) and a 

comparison stimulus that varies from trial to trial (e.g., one sound from a set ranging 

from barely weaker to barely louder than the comparison stimulus). Participants indi-

cate for which of the paired stimuli the target attribute has the largest or lowest value 

(e.g., which of the two stimuli is louder).   Figure 5.3  shows the likely outcome of a 

constant stimuli experiment: the function relating response probabilities to stimulus 

values is called the  psychometric function . The absolute threshold can thus be defined 

as the stimulus intensity perceived 50 percent of the time; the differential threshold 

can instead be measured as the average of the stimulus values judged greater than the 

standard 25 percent and 75 percent of the time. More often than not, none of the 

presented stimuli is associated with the exact response probabilities used to calculate 

the thresholds. In part for this reason, and in part for the need to integrate experi-

mental data across all the investigated stimuli, a psychometric function is usually fit 

to the observed response probabilities for all stimuli (e.g., a cumulative normal distri-

bution [ 152, 153 ]), and the thresholds are estimated from the parameters of the fitted 

function.    

The method of constant stimuli provides another important measure of sensation: 

the  point of subjective equality  (PSE). The paradigm used for this purpose is the same as 
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the trials. The framework of  signal detection theory  (SDT [ 48 ]) remedies this problem by 

computing bias-independent measures of sensitivity. The reader is referred to the 

works of McNicol [104] and of MacMillan and Creelman [ 95 ] for recent handbooks 

on SDT. 

 A second potential shortcoming of the method of constant stimuli is a low engage-

ment of the experimental participant, who might quickly grow bored with the repeti-

tive task. The  adjustment method  is a less tedious alternative that measures absolute 

and differential thresholds and PSEs. Accordingly, participants actively adjust the value 

of a stimulus property until a desired sensory result is achieved. For example, the 

participant might use a volume knob to adjust the intensity of a 1-kilohertz compari-

son stimulus so that it is perceived as loud as a 200-hertz standard stimulus of fixed 

intensity, thus producing an estimate of the PSE. The price of the adjustment method 

is an increase in the noise of the experimental data. In the PSE measurement experi-

ment, imperfections in the manual control of the volume knob can, for example, 

produce a reduced accuracy of the adjustment response. 

 A final shortcoming of the method of constant stimuli is its low efficiency, which 

is the fact that many answers are required for each of the stimuli, even for the least 

informative ones, to yield reliable estimates of the parameters of the psychometric 

function. For example, when measuring the absolute threshold, the experimenter 

might be interested in a single point of the psychometric function associated with a 

response probability of 50 percent. However, the method of constant stimuli would 

also require collecting many responses for stimuli that are far from the absolute thresh-

old.  Adaptive methods  are a more efficient alternative to the method of constant stimuli 

because the presented stimuli are concentrated around the point of interest on the 

psychometric function [ 34, 88, 143 ]. This is achieved by determining the level of the 

stimulus presented at a given trial based on the responses given at the preceding trials. 

The simplest and earliest example of adaptive method is the staircase or von B é k é sy 

tracking method [18,  146 ]. In an experiment for the measurement of the absolute 

threshold for sound intensity, the participant is asked to tell whether he hears the 

presented sound or not. Importantly, if the participant reports a detection at one trial, 

the intensity at the succeeding trial is decreased, whereas the intensity at the succeed-

ing trial is increased if no detection has been reported (see   figure 5.4 ). This simple rule 

for determining the value of the presented stimuli allows the experimenter to present 

sound intensities that are close to the absolute threshold. Alternative methods for 

determining the stimulus values provide target points on the psychometric function 

other than the 50 percent [ 88 ].    
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psychophysical experiment stimuli are often highly controlled and vary along a very 

low number of dimensions (e.g., only sound level in the absolute-threshold example 

reported in section 5.1), identification and categorization experiments can be carried 

out with complex stimuli that differ along a large number of properties. 

 Data analysis can focus either on measures of performance (e.g.,  “ Which among 

these tones has been identified correctly most often? ” ) or on the raw probabilities of 

assigning each stimulus to each of the response categories (e.g.,  “ Which among these 

tones has been most frequently identified as a violin tone? ” ). A third analysis option 

is to adopt SDT methods to compute measures of the sensory distance between 

response categories (e.g.,  “ Is the sensory distance between violin and guitar tones 

shorter than that between violin and flute tones? ” ) independent of response biases 

(e.g., in a categorization experiment with an equal number of violin, guitar, and flute 

tones, the tendency to use the response category  “ violin ”  more often than any other). 

This latter analysis approach was adopted by Giordano et al. [ 42 ] in an experiment 

investigating the effects of multisensory information (auditory, tactile, kinesthetic) 

on the identification of walked-upon materials. Measures of bias-independent sensory 

distance among walked-upon materials were computed within the framework of 

 general recognition theory  (GRT, see   figure 5.5  [1,  2 ]). Unlike classical SDT methods, GRT 

makes it possible to deal with experiments in which stimuli vary along multiple prop-

erties, a frequent case when one is investigating naturalistic stimuli, and in which 

participants are allowed more than two response categories. Another advantage of GRT 

is that it considers within a single theoretical and analytical framework data from a 

variety of methods: identification, categorization but also dissimilarity (section 5.4), 

and preference (section 5.8).    

5.3   Scaling and Rating 

Perceptions can be organized in several different ways. In section 5.2 we saw that 

perceptions can be mapped onto discrete categories, each described by a verbal label. 

In this section we present a number of methods for measuring ordered relations among 

perceptions (e.g., the touch sensation of silk is smoother than that of wool). The 

concept of  sensory continuum  is central to these methods. Sensory continua are the 

result of a mental computation that allows us to order stimuli relative to a specific 

attribute and can be conceptualized as directional lines in a cognitive space (e.g., the 

sound of a flying bee is closer to the origin of the sensory continuum for loudness 

than the sound of a jet plane). Within a sonic-interaction design context, the methods 

presented in this section allow the answering of questions such as:  “ How does 
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perceived effort vary between sonic feedbacks for robotic surgery applications? ”  and 

 “ How should the user-controlled gain for sound level vary to produce a linear increase 

in perceived loudness? ”  

 Scaling methods make it possible to measure the  psychophysical function , that is, 

the function that relates physical attributes of the stimuli to sensory continua (e.g., 

sound level and perceived loudness).  2   We can distinguish between two families 

of scaling methods: partition and ratio scaling (see Gescheider [ 35 ] for a thorough 

presentation). 

 In a  partition scaling  experiment, participants are asked to divide a target physical 

dimension (e.g., sound level) into perceptually equivalent intervals. For example, 

participants are presented with two stimuli that bracket the range of variation of the 

physical dimension of interest (e.g., a low- and a high-level sound) and are asked to 

divide the sensory continuum of interest (e.g., loudness) into a prespecified number 

of equal sensory intervals (e.g., to adjust the level of this sound so that the difference 

between its loudness and that of the low-level sound is equal to the difference between 

its loudness and that of the high-level sound). Similar information can be collected 

using the  category scaling  method. Accordingly, participants are presented with a 

set of stimuli that differ along the physical dimension of interest and are asked to 

assign them to one of a set of prespecified categories, each representing a different 

level of the sensory quantity and each bracketing an equal range of sensory magni-

tudes (e.g., to assign each of these fifty differently loud sounds to five classes of 

progressively increasing loudness, with each class bracketing an equal range of loud-

ness variation). 

 The methods of  ratio scaling  and  magnitude scaling  produce a mapping from the 

sensory continuum to a numeric continuum. Both methods have one  estimation  

variant and one  production  variant. In a ratio estimation task, participants estimate 

numerically the ratio between the sensory magnitude of two stimuli (e.g.,  “ What is 

the ratio between the loudness of sound A and that of sound B? ” ). In a ratio produc-

tion task, participants adjust the physical properties of a stimulus so that the ratio of 

its sensory magnitude to that of a reference stimulus equals a prespecified number 

(e.g.,  “ Adjust the level of sound A so that its loudness is one-fourth of that of the 

reference sound B ” ). With magnitude estimation, participants assign a number to the 

sensory magnitude of the first presented stimulus and estimate numerically the sensory 

magnitude of subsequent stimuli based on the number assigned to the first stimulus 

(e.g.,  “ Given that you estimated the loudness of sound A to equal 100, what number 

quantifies the loudness of sound B? ” ). With magnitude production, the sensory mag-

nitude for a reference stimulus is assigned a numerical value, and the participant 
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is asked to manipulate the physical properties of a new stimulus so that its sensory 

magnitude equals a given number (e.g.,  “ The loudness of this reference sound equals 

20; adjust the level of sound B so that its loudness equals 50 ” ). Results from estimation 

and production scaling methods are known to diverge systematically because partici-

pants tend to avoid extreme values along the response continuum (the numerical and 

physical continuum, for estimation and production methods, respectively). This sys-

tematic divergence is termed regression bias [ 136 ]. The regression bias can be dealt 

with by estimating an unbiased psychophysical function defined as the  “ average ”  of 

the functions obtained with estimation and production methods. 

 The  rating method  can be conceived as a variant of the magnitude estimation 

method. Accordingly, participants estimate the sensory magnitude by choosing an 

integer number within a prespecified range (e.g.,  “ Rate the hardness of a hammer used 

to generate this sound by using the integer numbers from 1 to 7 ”  [ 33 ]). Before any 

experimental data are collected, it is good practice to allow participants to establish a 

mapping between the range of variation of the target sensory property within the set 

of stimuli and the response scale. To illustrate the need of this additional step, we can 

hypothesize that participants are asked to rate loudness on a scale from 1 to 10, and 

that participants are not familiarized with the experimental set of stimuli before rating 

each of them. A participant at the beginning of this experiment might, for example, 

rate the loudness of one stimulus using the highest allowed response (10), and find 

out that subsequent stimuli are louder than the previously heard ones. In such a case, 

the ratings of the participant will not accurately measure the perceived loudness. A 

variant of the rating task uses a nonnumerical continuous response scale. For example, 

in an experiment on the estimation of the hardness of struck sounding objects [ 41 ], 

participants rated hardness by moving a slider along a continuous scale marked  “ very 

soft ”  and  “ very hard ”  at the endpoints. This approach circumvents eventual response 

biases originating from the tendency to use particular numbers more frequently than 

others (e.g., multiples of 5 in a 1 to 100 scale) and maximizes the amount of experi-

mental information (e.g., the number of different rating answers that a participant 

can give is usually much larger with a slider than with a numerical scale including 

only integer numbers). 

 The method of  cross-modality matching  finally relies on the comparison of sensory 

magnitudes from different modalities. With this method, participants adjust the prop-

erties of a comparison stimulus so that the target sensory magnitude it evokes matches 

the magnitude of a target sensory attribute of the reference stimulus presented in a 

different modality. This method was, for example, used by Grassi [ 47 ] to investigate 

the estimation of the size of a ball from the sound it makes when bouncing on a plate. 
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On each trial, the reference stimulus was a bouncing sound. Participants were asked 

to estimate the size of the bouncing ball by manipulating the diameter of a circle 

presented on a computer screen. Focusing on the design of sonic interactions, cross-

modality matching could, for example, be adopted to calibrate the sensory properties 

of simultaneous auditory and tactile displays. 

5.4   Dissimilarity Ratings 

Many naturalistic sonic interactions generate rich sensory signals from various modali-

ties (e.g., walking on various gravels or grass; crumpling a sheet of paper). Similarly, 

sonic interactions designed in the laboratory can involve many different parameters 

that control the sensory information delivered to the user. Within such rich domains 

it is often unclear what sensory properties dominate perceptions (e.g., which sensory 

properties of a naturalistic event; which synthesis parameters of a designed sonic 

interaction). The method of  dissimilarity ratings , also known as paired comparisons 

method, sheds light on this issue and, in combination with particular data-analysis 

methods, makes it possible to answer questions such as:  “ Which properties of a 

complex sonic interaction are most relevant for the user? ”  and  “ Do different individu-

als focus on different properties of the sensory event? ”  Dissimilarity ratings have been 

frequently adopted to characterize the perception of complex auditory stimuli such 

as musical sounds [ 51, 75, 102 ] or environmental sounds [ 57, 105 ]. 

 The goal of a dissimilarity ratings experiment is to measure the perceptual distance 

between stimuli: very similar/dissimilar stimuli are separated by a short/large percep-

tual distance. The structure of a dissimilarity ratings experiment is very similar to that 

of a standard ratings experiment. On each, participants are presented with two stimuli 

and are asked to rate how dissimilar they are on a  “ very similar ”  to  “ very dissimilar ” 

scale. Throughout the experiment, participants rate the dissimilarity of each possible 

pair of stimuli.  3   so that each of the participants yield a matrix of between-stimulus 

perceptual distances. 

 The most common strategy for the analysis of dissimilarity ratings relies on the 

mathematical model of multidimensional scaling (MDS [ 9, 20 ])  4  . In general, MDS 

represents the dissimilarity ratings as the distance between the stimuli in a Euclidean 

space with a given number of dimensions (see   figure 5.6 ).  5   ,   6   Pairs of stimuli rated as 

very dissimilar are also far apart in the MDS space; stimuli rated as very similar are 

very close in the MDS space.    

A notable limitation of classic MDS arises from the fact that it yields  rotationally 

invariant  solutions. A rotationally invariant solution can be rotated arbitrarily without 
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multiplicative terms specific to each of the participants that modify the spread of the 

stimuli along the dimensions of the group space, and allow her to reconstruct a space 

of mental distances specific to the participant that better accounts for her perceptions 

(see   figure 5.6 ). Importantly, the wMDS model is not rotationally invariant. For this 

reason, the dimensions of the group space can be taken as a model of the response 

criteria followed to carry out the dissimilarity ratings task. For example, stimulus fea-

tures that strongly correlate with the location of the stimuli along a specific dimension 

of the wMDS model are likely to have been used by participants to estimate the 

between-stimulus dissimilarity (note that the correlation between a dimension of the 

wMDS model and a stimulus feature is not affected by the multiplication of the dimen-

sion by a participant-specific weight). Further, within the wMDS model the range of 

variation of a given dimension for each of the participants can be taken as a measure 

of the perceptual relevance of the dimension to the participant herself, that is, if for 

one participant the first dimension has a larger range of variation than the second 

dimension, she likely carried out the dissimilarity ratings task by focusing more on 

the feature that correlates with the first dimension than on the feature that correlates 

with the second dimension (see   figure 5.6 ). 

 A very important aspect of the dissimilarity ratings method is that it does not 

constrain participants to focus on a specific property of the stimuli. Indeed, such a 

generic task as  “ rate the dissimilarity between these two stimuli ”  leaves the participant 

free to decide which stimulus properties most strongly affect dissimilarity. In this 

sense, dissimilarity rating is the most liberal among the experimental methods pre-

sented up to this point. Dissimilarity rating thus frees the experimenter from assump-

tions about the perceptual structure of the stimulus set: asking participants to scale a 

particular property of the stimuli (e.g., the size of a bouncing ball from its sound [ 47 ]) 

indeed comes with the hidden assumption that perceptions are organized along the 

rated property. Such an assumption can prove hard to be tested empirically (e.g., What 

is the object of perception when hearing the sound of a bouncing ball? Size, weight, 

or the acceleration at the moment of impact with a sound-generating object?). The 

liberal nature of dissimilarity ratings thus makes it a particularly good method for 

exploratory studies of complex perceptual domains (e.g., environmental sounds [ 57 ]), 

for which it might just not be possible to formulate a working hypothesis on what 

stimulus attributes are perceptually relevant (e.g.,  “ Which stimulus attributes capture 

the perceptual difference between the sound of an airplane engine and that of a dog 

howling? ” ). For all these reasons, the quantification of perceptual distances can be 

considered the method of choice for the exploration of novel, complex perceptual 

domains (see also Borg  &  Groenen [ 9 , pp. 9 – 11]). 
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We have seen that dissimilarity ratings, in conjunction with wMDS modeling, 

makes it possible to ( 1)  discover perceptually relevant attributes of the stimuli; ( 2 ) 

establish hierarchies of perceptual relevance for stimulus attributes (e.g., loudness 

is more perceptually relevant than pitch); and ( 3)  analyze interindividual differences 

for the perceptual relevance of stimulus attributes. From the applied perspective, the 

designer of sonic interactions might focus the modeling efforts on those properties 

of the interactive events that dominate the perceptions of the majority of the 

individuals. 

 5.5   Sorting 

 One of the goals for a designer of sonic interactions might be to establish a perceptu-

ally meaningful palette of presets for the parameters of complex audio-haptic synthesis 

algorithms. Palettes of presets are, for example, common in the control of digital color 

spaces (e.g., the user is able to select from various color presets rather than having to 

specify the RGB value corresponding to the desired color). Within the context of sonic 

interactions, the designer might, for example, plan to create a palette of presets for 

the control of the perceived material of virtual audio-haptic objects. Faced with this 

problem the designer needs to decide how many presets should be included in the 

palette and what parameter values should be assigned to each of them:  “ How many 

categories of perceived materials can the synthesis algorithm reproduce, and what is 

the most typical configuration for each of them? ”  Sorting methods make it possible 

to answer these questions and, in general, can be adopted to define meaningful catego-

ries of events within a perceptual domain. Further, sorting methods can be adopted 

as a more efficient although less reliable and accurate alternative to dissimilarity 

ratings (see section 5.4) [ 38 ]. 

 With sorting experiments, participants are quite simply asked to create groups of 

stimuli. In an image-sorting experiment, each image might be printed on a card, and 

participants might be asked to create groups of cards. In a sound-sorting experiment, 

each sound might be represented by an icon on a computer screen, and participants 

might be asked to group the icons. One of the first decisions to be made when design-

ing a sorting experiment how many groups of stimuli the participant should create. 

In the  free sorting  variant [ 121 ], the experimenter does not specify the number of 

groups and leaves the decision up to the participant. A free sorting task could, for 

example, be used to answer the materials-palette problem described at the beginning 

of this section (e.g.,  “ group together stimuli generated with the same material; create 

as many groups you think are necessary ” ). With  constrained sorting  the number of 
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groups is instead specified by the experimenter. Gingras, Lagrandeur-Ponce, Giordano, 

and McAdams [ 36 ] used constrained sorting to test the recognition of the individuality 

of music performers. In this experiment participants were presented with excerpts of 

organ-performance recordings from six different performers and were asked to create 

six different groups of excerpts played by the same individual. 

 A second important decision to be made when designing a sorting experiment 

concerns the criteria that participants should follow when creating the groups of 

stimuli. In the above examples participants receive specific instructions about the 

criteria they should follow to create the groups. When this is the case, sorting 

methods bear a strong resemblance to the categorization task described in section 

5.2. The only major differences are indeed that categories are not labeled verbally 

by the experimenter (free and constrained sorting) and that the number of categories 

may not be specified (free sorting). Most often, however, participants are given the 

more generic instructions to create groups based on the similarity of the stimuli (e.g., 

for studies carried out with complex naturalistic sounds [ 8, 38, 53, 57 ]). When this 

is the case, the sorting task is the  “ categorization analogue ”  of dissimilarity ratings 

and shares with this method the ability to uncover the structure of perceptual 

domains within an assumption-free framework (see section 5.4). Similarity-based free 

sorting further allows one to measure the so-called basic level of categorization in a 

stimulus domain [ 120 ]. Sorting data, coding for the group membership of each of 

the stimuli, are frequently converted into co-occurrence data (see Coxon [ 21 ] for 

various data-analytic strategies for sorting data). For each possible pair of stimuli, 

the square co-occurrence matrix uses a binary variable to code whether stimuli have 

been assigned to the same group or not. Co-occurrences collected with a similarity-

focused sorting are often considered as binary measures of dissimilarity: dissimilar 

stimuli do not belong to the same group (co-occurrence = 0), whereas similar stimuli 

do (co-occurrence = 1). 

 Sorting makes it possible to measure a full dissimilarity matrix in a shorter time 

than dissimilarity ratings [ 4, 38, 121 ]. For this reason sorting is often adopted to 

measure the dissimilarity of large sets of stimuli, or the dissimilarity of stimuli that 

might easily produce adaptation effects (e.g., taste stimuli [ 84 ]). The higher efficiency 

of sorting comes, however, with a price: dissimilarity data are less accurate, that is, 

less likely to reflect stimulus properties, and less reliable, that is, less likely to be rep-

licated with a different group of participants [ 38 ]. Another drawback of sorting methods 

concerns the data-modeling aspect, in particular the extent to which MDS algorithms 

accurately model sorting dissimilarities. As explained above, each of the participants 

in a sorting experiment yields a binary dissimilarity matrix, the co-occurrence matrix. 
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Notably, MDS models of binary dissimilarities are known to present strong artifacts 

that prevent an accurate account of the input data [ 44 ]. As such, interindividual-

differences MDS models of sorting data (e.g., wMDS, see section 5.4) are prone to 

significant errors. For this reason sorting data are less than ideal for measuring and 

modeling interindividual differences in perceived dissimilarity. It is thus advisable to 

carry out MDS analyses of sorting data by focusing on the co-occurrence matrix pooled 

across participants. 

 The  hierarchical sorting method  finally yields richer participant-specific data than 

free sorting (e.g., Rao  &  Katz [ 117 ]; see Giordano et al. [ 38 ] for various comparisons 

between sorting methods and dissimilarity ratings). In the agglomerative variant of 

this method, participants start from a condition where each of the stimuli is in a dif-

ferent group and, at each stage of the procedure, merge together the two most similar 

stimuli or groups of stimuli. The procedure is iterated until all stimuli are merged in 

the same group. Between-stimulus dissimilarity is estimated by the step of the merging 

procedure when two stimuli are first grouped (e.g., dissimilarity = 1 and 10 if stimuli 

A and B have been merged together at the first or tenth stage of the sorting procedure). 

With this method, each of the participants thus yields a square dissimilarity matrix 

with as many different values as the number of merging steps.   Figure 5.7  shows the 

hierarchical sorting for one of the participants in an experiment carried out with 

environmental sounds [ 40 ] (also see other studies of sound stimuli based on the hier-

archical sorting method [ 38, 61 ]). Note that in the first step of this hierarchical sorting 

experiment participants created 15 groups of similar stimuli. In other words, the hier-

archical sorting started with a constrained sorting step ( truncated hierarchical sorting ; 

see Giordano et al. [ 38 ]).    

 5.6   Verbalization 

Verbalization tasks can be used to explore qualitatively the perceptually relevant attri-

butes of sound-interactive events:  “ Do users focus on the characteristic of the sound 

signal (e.g., this sound is very bright), on the characteristic of the source (e.g., this is 

the sound of a breaking glass), or on more abstract symbolic contents associated with 

the sound event (e.g., harmfulness for pieces of shattered glass) ” ? Focusing on interac-

tive events, verbalizations might be collected during an interview where participants 

are shown the video recording of their own interaction with a sonic prototype (auto-

confrontation interview). Analysis of the verbalizations will, for example, provide 

useful feedback on individual interactive strategies or on problems in the design of 

the prototype. 
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Various software routines are available for the analysis of verbalization data. The 

software LEXICO [ 16 ] can be used to tabulate the terms used by participants according 

to their frequency of occurrence in the verbalization responses. The software STONE 

[ 115 ] can be used to carry out a lexical analysis that organizes the semantic fields 

among the different verbal descriptions. Methods of natural language processing can 

be used to carry out various analyses of the semantic content of the verbal descrip-

tions. For example, latent semantic analysis techniques [ 83 ] can be used to compute 

measures of the semantic similarity of the verbal descriptions used to identify a sound-

generating event [ 40 ]. Specific to research on complex sounds, methods for the scor-

ing of the accuracy of verbal identifications of a sound-generating event have been 

detailed [ 3, 40, 98 ]. Further methods for the analysis of verbal response data have been 

developed by Nosulenko and Samoylenko [108]. Notably, the approach developed by 

Nosulenko and colleagues makes it possible to organize and encode verbal units at 

different levels: logical, perceptual, and semantic. 

 Verbalization tasks have been frequently used in the study of complex sounds. 

Peters [ 114 ] investigated the verbalization of synthetic sounds (e.g., pure tones, white 

noise), speech, music, and environmental sounds. Overall, terms describing the 

sensory properties of the sounds (e.g., high, low, soft, loud) were used more often than 

words related to objects, actions, and events involved in the generation of a sound. 

Nonetheless, only one-third of the participants used terms describing the sensory 

quality of the stimuli for real sounds. Similarly, in a study on the free identification 

of environmental sounds, Vanderveer [ 145 ] observed that listeners most often described 

the sound-generating event and, more specifically, the actions and objects involved, 

, and the context where the sound was generated. Faure [ 32 ] asked participants 

to freely describe pairs of musical sounds presented during a dissimilarity estimation 

experiment. Verbal responses belonged to one of three semantic categories: descriptors 

of the sound source (e.g., material, action), descriptors of the temporal evolution of 

a sound (e.g., attack, progression, resonance), and descriptors of sensory aspects of 

a sound (e.g., sharp, light, bright). Kyncl and Jiricek [ 82 ] investigated the free ver-

balization of vacuum cleaner sounds. Thirty-three pairs of semantic opposites were 

derived from the verbal responses, five of which were consistently judged as relevant 

to describe the vacuum cleaner sounds: fuzziness, atypicality, inefficiency, loudness, 

and pleasantness. 

 5.7   Semantic Differential 

 The  semantic differential  method can be conceived as a multidimensional extension of 

the ratings method (section 5.3). The main difference between the two methods 
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indeed stands in the number of psychological or perceptual attributes simultaneously 

evaluated by the experiment participant: one for the latter, more than one for the 

former. The semantic differential method can, for example, be adopted to optimize a 

sound-interactive system according to multiple psychological attributes (e.g.,  “ Which 

configuration has the highest aesthetic and functional attributes? ” ) and to analyze the 

interdependence among multiple properties of sonic interactions (e.g.,  “ How do pref-

erence, perceived sound brightness, and perceived efficiency covary? ” ). Various studies 

adopted the semantic differential to assess the multidimensional character of complex 

sound stimuli (e.g., Solomon [ 133 ] and von Bismarck [ 147 ] for early applications; and 

various sources for studies on musical timbre [71, 116, 134, 151]; for studies on envi-

ronmental sounds [6, 72, 81, 155]; for studies of sounds generated with various 

human-made objects such as cars, vacuum cleaners, air conditioning systems, and 

refrigerators [ 5, 15, 65, 67, 70, 82, 131, 139 ]). 

 In the most popular variant of the semantic differential method [ 109, 110 ], partici-

pants rate each stimulus along several bipolar scales defined by opposing semantic 

descriptors (e.g.,  “ soft ”  and  “ loud ”  or  “ pure ”  and  “ rich ” ). Each bipolar scale is usually 

divided into an odd number of intervals (e.g., seven). The task of the participant is 

thus to choose which of these intervals most appropriately describes the location of 

the stimulus along the continuum defined by the opposing semantic descriptors (e.g., 

this sound has a loudness of 5 along a soft-to-loud scale with seven intervals). As 

described for the ratings method, the rating scale does not need to be clearly divided 

into a predefined number of intervals (e.g., ratings along each bipolar scale can be 

collected using on-screen sliders or by marking with a pen a position along a line 

connecting the two opposing descriptors). The method of  verbal attribute magnitude 

estimation  (VAME) is a variant of the semantic differential method that might improve 

the interpretability of the results [ 59 , p. 259]. With the VAME method, bipolar scales 

are not defined by opposing semantic descriptors but by one semantic descriptor and 

its negation (e.g.,  “ not loud ”  and  “ loud ” ). 

 Semantic differential studies are not restricted to particular attributes: they can be 

adopted to evaluate various properties of the stimuli such as sensory attributes (e.g., 

sound roughness), higher-level psychological attributes (e.g., pleasantness), or emo-

tional attributes (e.g., dominance). As a result, this method can be a good choice for 

the study of previously unexplored perceptual domains. Two considerations are impor-

tant concerning the design of a semantic differential experiment. First, in the absence 

of previous literature on the investigated stimuli, the choice of what semantic attri-

butes should be considered can be based on a preliminary verbalization experiment 

(see section 5.6). For example, participants in the preliminary experiment might be 

presented with each of the stimuli and asked to describe verbally their most salient 
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attributes. The semantic differential can thus be designed by considering those seman-

tic attributes used by the majority of the participants in the verbalization experiments. 

A second design consideration concerns the number of attributes included in the 

semantic differential. It is likely that as the number of semantic attributes grows, 

participants are more likely to answer using response strategies meant to reduce the 

difficulty of the task. In particular, with an excessive number of semantic attributes, 

participants might start using response scales in a correlated manner (e.g., sounds that 

are rated as brighter are also rated as more pleasant) not because of a genuine associa-

tion between the semantic attributes within the stimulus set (e.g., all feminine voices 

have a high pitch) but simply in order to minimize fatigue. To minimize these effects 

it is advisable to limit the number of semantic attributes to the minimum necessary. 

Independently of the origin of the correlation between different response scales, 

statistical methods such as factor analysis or principal components analysis can be 

adopted to reduce the raw semantic differential data into a set of independent dimen-

sions of evaluation. 

 5.8   Preference 

A sound designer often aims to improve the overall quality of sonic interaction experi-

ences. To this purpose she might seek an answer to questions such as  “ Which configu-

ration of a sonic feedback system do users prefer? ”  or, almost equivalently,  “ Which 

configuration is the least annoying? ”  Preference judgments have been often adopted 

in the applied sector to improve the design of a variety of products [ 54 ] (see Ellermeier 

 &  Daniel [ 27, 28 ] for studies of tire sounds and environmental sounds; Susini and 

colleagues, [ 139, 140 ] for studies of car sounds and air-conditioning noises; Lemaitre, 

Susini, Winsberg, McAdams,  &  Letinturier [ 87 ] for a study of car horns). 

 We can distinguish between two types of preference data: revealed and stated pref-

erences [ 7 ]. Revealed preferences are usually derived from choice data collected in 

ecological conditions (e.g., product sales). One of the main disadvantages of revealed 

preferences is that the complete set of alternative choices is often unknown (e.g., data 

on the sales of Gibson Les Paul and of Fender Stratocaster guitars lack information 

about all of the brands and makes of electric guitars considered by the costumers of 

a musical instrument shop). In the following, we focus on stated preferences which 

are directly elicited from the participants and are not characterized by this important 

drawback of revealed preferences. 

 Preference data can be collected with various experimental methods [ 50 ], some 

of which have been described in previous sections. In a  paired preference comparison  
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task, participants are presented with all the possible pairs of stimuli, one at a time, 

and are asked to choose which of the two they prefer. In a  preference ranking  task, 

participants are presented with all of the stimuli at once and are asked to arrange 

them from the least to the most preferred. With  preference ratings , participants rate 

their preference for each of the stimuli on a categorical or continuous scale (see 

section 5.3). 

 The most peculiar aspect of the study of preference is not the behavioral method 

used to collect the data, but strategy adopted for their analysis. Here, we briefly 

describe several models of preference judgments and list various references for the 

interested reader.  

 The law of comparative judgment by Thurstone [ 142 ] can be considered as one of 

the earliest models developed for the analysis of paired preference comparison data. 

Within this framework, the probabilities of preferring one stimulus over the other are 

used to determine the position of each of the stimuli along a preference continuum. 

A similar representation can be computed based on the Bradley-Terry-Luce (BTL) 

model [ 10, 90 ]. More complex preference models locate stimuli in a preference space 

with a given number of dimensions. We can distinguish between two classes of such 

models (see   figure 5.8 ): ideal point and ideal vector models. Ideal point models rep-

resent experiment participants as points in the same preference space where stimuli 

are positioned. The location of the participant within the space models the hypotheti-

cal stimulus he prefers the most, that is, the ideal point, and his preference for each 

of the experimental stimuli is represented by their distance from the ideal point 

(stimuli farther from the ideal point are less preferred). Ideal point models can, for 

example, be computed by using unfolding algorithms [ 9, 17, 20, 24, 25 ]. With ideal 

vector models, stimuli are also represented as points in a space with a given number 

of dimensions, whereas participants are represented as vectors oriented toward a 

maximum preference point located at infinity. The preference for the experimental 

stimuli is thus modeled as the location of their projections onto the ideal vector, with 

preferred stimuli located further along the direction of the ideal vector. Ideal vector 

models can be fitted using the MDPREF algorithm [ 14 ].    

The dimensions of various multidimensional models of preference can, in general, 

be interpreted similarly as the dimensions of the weighted Euclidean model (wMDS). 

For example, with the MDPREF model the dimensions can be interpreted as corre-

sponding to the stimulus attributes that most strongly influence preference in the 

population of participants. Further, within the same model the length of the projec-

tion of a participant-specific ideal vector onto a dimension measures the relevance of 

that dimension, that is, stimulus attribute for the participant. 
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5.9   Continuous Evaluation 

Sonic interactions are time-varying events: posture, sound, touch, and visual proper-

ties all change in time as a consequence of the motor behavior of the user. Importantly, 

the temporal variation in sensory information is likely to result in a temporal variation 

of the experienced properties of the sonic interaction itself. The behavioral methods 

presented in the previous sections are not able to account for this level of complexity 

of a sonic interaction because, in general, they produce one single data point for each 

of the presented stimuli. Continuous evaluation methods instead permit the measure-

ment of the temporal dynamics of the perceptions of a user (e.g.,  “ How does the 

emotional response to a complex sound vary in time? ” ) because they continuously 

sample perceptions throughout the entire duration of the stimulus. 

 Participants in a continuous evaluation experiment are asked to repeatedly judge 

some perceptual/cognitive attribute as the stimulus unfolds in time (e.g., a musical 

composition or a soundscape). No limitation is imposed on the type of task carried 

out by the listener: we can thus have a continuous ratings task (e.g., rate continuously 

along a pleasant/unpleasant scale), a continuous categorization task (e.g.,  “ What emo-

tions are you currently feeling? Sadness, happiness, fear, or anger? ” ), or a continuous 

preference estimation task (e.g.,  “ Rate your current preference for the sound material 

on a least preferred to most preferred scale ” ).   Table 5.2  provides a classification of 

the type of judgments and stimuli investigated in a number of continuous evaluation 

studies.   

  Table 5.2 
 Summary of behavioral methods used in previous continuous evaluation studies  

Behavioral method  Sound stimuli  Study 

Ratings (categorical scale)  Road traffic 

 Trains 

 Helicopters 

 Car accelerations 

[ 78, 79 ] 

[ 106 ] 

[ 80 ] 

[ 77 ] 

Ratings (continuous scale)  Road traffic 

 Music 

 Speech 

[ 30, 31, 45 ] 

[ 107, 97, 125, 101, 144 ] 

[ 19 ] 

Ratings (continuous and categorical scales)  Road traffic 

 Synthetic sounds 

 Speech 

[ 150, 64, 111 ] 

[ 62, 137, 138 ] 

[ 60, 52 ] 

Cross-modality matching  Pure tones  [ 137 ] 
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The design of a continuous evaluation experiment should take into account the 

maximum temporal resolution of the responses that an experiment participant can 

reliably give. The temporal resolution of the response is indeed limited by various 

factors such as the constants of temporal integration governing a particular perceptual 

or sensory process (e.g., loudness integration) or the speed of the motor responses of 

a participant (e.g., how rapidly a participant can move a slider). For example, whereas 

it is unlikely that a listener can rate the time-varying loudness of a stimulus with a 

temporal resolution higher than 100 milliseconds (ten ratings per second), it is plau-

sible that a reliable rating can be collected at slower temporal rates such as two ratings 

per second. Because of these limitations, continuous evaluation methods are better 

suited for quantifying the perceptual dynamics for relatively long stimuli (e.g., several 

minutes) rather than for very short ones (e.g., sounds shorter than 1 second).  

In regard to sonic-interaction contexts, logistics make it hard if not impossible to 

ask a participant to interactively generate a sound while evaluating simultaneously 

his time-varying perceptions. For this reason, it might be advisable to carry out con-

tinuous evaluations on offline recordings of sonic interactions (e.g., videos, sound 

recordings). Despite this limitation, this method will permits to address important 

sonic-interaction issues, such as the temporal correlation between the gestures of a 

user and the perceptions of a passive listener. The implementation of continuous 

evaluation must finally meet a number of requirements: judgments must be made 

easily, rapidly, and without discontinuity. Several methods combined with specific 

devices for response collection have been proposed. The interested reader is referred 

to the work of Schubert [ 126, 127 ] for a description of the methodological issues 

associated with the continuous evaluation of complex musical materials. 

 Continuous evaluation methods have been used for the study of speech quality 

[ 52, 60 ], for the quantification of the effects of running bus sounds on comfort [ 111 ], 

to estimate auditory brightness [ 62 ], and to measure emotional responses to music 

[ 76, 101, 132, 144 ]. Various studies have assessed the relationship between the instan-

taneous judgment of a given perceptual property of the time-varying stimulus and the 

global judgment of the overall level of the same property for the entire stimulus.

Kuwano and Namba [ 79 ] and Fastl [ 31 ], for example, showed that judgments of the 

global loudness of a complex sound are strongly related to the peaks of the time-

varying loudness (see also [ 45, 63, 137 ]). 

 5.10   Multisensory Contexts 

 By definition a sonic interaction involves multiple sensory modalities: audition, touch 

and kinesthesia (haptics), and possibly vision.  7   Within the context of multisensory 
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interactions, a relevant issue might, for example, be whether each of the involved 

sensory modalities affects a behavioral variable of interest (e.g.,  “ Does the sound of 

car doors influence preference? ” ) or which of the sensory modalities has the strongest 

behavioral effect (e.g.,  “ Which has the stronger impact on preference: the sound of a 

car ’ s doors closing or the felt weight of the doors? ” ). Alternatively, the goal of the 

designer might be to improve some aspect of the performance of the user based on 

multiple sensory inputs:  “ Do sonic feedbacks shorten the time required for parking a 

car? ”  Answering most of these questions does not usually require experimental tasks 

different from those described in previous sections. As detailed in this section, the 

study of multisensory contexts might nonetheless pose specific challenges and require 

specialized experimental paradigms. 

 The study of multimodal perception and performance typically involves a compari-

son of data collected when only one modality is stimulated with data collected in 

multisensory contexts (e.g., when only touch is available vs. when both sound and 

touch are available). Designing an experimental condition where information from 

one single modality is presented might not always be trivial, especially when partici-

pants interact with naturalistic objects.  

 A recent study by Giordano et al. [ 42 ] illustrates this issue. The goals of this study 

were to measure the effects of various sensory modalities and of their combination 

on the identification and discrimination of walked-on grounds: audition, kinesthesia 

(e.g., perception of limbs movement), and touch. Participants carried out a simple 

identification task (see section 5.2). The ideal experiment would have included seven 

experimental conditions: three conditions for each of the sensory modalities in isola-

tion, three conditions where only one of the three modalities was suppressed, and 

one condition that combined information from all modalities. The general approach 

adopted to suppress information from one modality was based on the phenomenon 

of masking: a signal cannot be perceived if presented together with a sufficiently 

intense masking stimulus (e.g., random signal or noise). Auditory information was thus 

suppressed by presenting walking participants with an intense noise over headphones, 

and leaving both touch and kinesthetic information intact. Similarly, touch informa-

tion was disrupted by presenting walking participants with a random mechanical 

vibration at the foot. The acoustical and tactile noises were presented simultane-

ously in a condition where only kinesthetic information was left intact. Notably, the 

mechanical actuator used to vibrate the foot also generated an audible noise (the range 

of frequencies that can be perceived with touch partially overlaps with the range of 

auditory frequencies). For this reason, an auditory-kinesthetic condition could not be 

investigated. Further limitations in the experimental design arouse from the impos-

sibility of suppressing kinesthetic information while participants walked. Apart from 
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the logistic challenge, such an experimental condition would have likely produced 

abnormal, and most importantly, unstable locomotion. For this reason the auditory-

tactile condition could not be investigated, and the auditory-only condition could be 

carried out only with nonwalking participants who were presented with recordings of 

the sound they had generated while walking on the grounds. The study by Giordano 

et al. [ 42 ] thus exemplifies the compromises and challenges faced in the study of 

multimodal naturalistic sonic interactions and shows the usefulness of noise-based 

disruption of sensory information in both the auditory and tactile domains. 

 A frequent goal of studies on multisensory contexts is to establish modality domi-

nance hierarchies, that is, to assess which modality affects most strongly the percep-

tion of multimodal events. This question is often answered by investigating  multisensory 

conflicts . Conflicting multisensory events combine contrasting information from dif-

ferent modalities, that is, modality-specific stimuli that induce different perceptual 

results when presented in isolation (e.g., a light located slightly to the left of the point 

of fixation and a sound presented slightly to the right of the same point). The experi-

mental paradigm relies on the comparison of perceptions for the unimodal stimuli 

with perceptions of multisensory conflicts (e.g.,  “ Provided that this light is perceived 

to be located on the left, and that this sound is perceived to be located on the right, 

what will be the perceived location of the light-sound event? ” ). In general, the percep-

tions for a multisensory conflict will be most similar to those for the dominant-

modality stimulus presented in isolation. This basic paradigm can be used to reveal 

the dominance of vision on audition in the estimation of the spatial position of an 

event (ventriloquist effect [ 66 ]), the effect of seeing the movements of the lips of a 

speaker on the speech perception [ 103 ], or the influence of the number of sound beeps 

on the perceived numerosity of visual flashes ([ 129 ]; see Shams, Kamitani,  &  Shimojo 

[ 130 ] for an overview of the effects of auditory information on visual perception and 

Lederman  &  Klatzky [ 86 ] for an overview of research on the multisensory perception 

of audio, haptic, and visual textures). From a design perspective, it would be reason-

able to focus modeling efforts on the modalities that dominate the perceptual responses 

of a user. 

 The work of Ernst and Banks [ 29 ] combines the study of multisensory conflicts with 

an interesting experimental manipulation of sensory noise. In simple words, the ML 

model predicts that in a multimodal context modality-specific information that is 

better discriminated when presented in isolation affects more strongly the multisen-

sory perceptions. To test this prediction, Ernst and Banks investigated the perception 

of the height of virtual visual-haptic ridges. The method of constant stimuli was used 

to measure the perceived height of ridges in visual-haptic conflicting stimuli where 
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to continue striking the object with the same velocity. In a final change phase, the 

properties of the virtual object are changed (auditory or haptic stiffness). Multisensory 

dominance is inferred from the strength of the effects of modality-specific changes on 

striking velocity, where a change in the dominant modality (haptics, in this experi-

ment) leads to larger changes in striking velocity. The assessment of multisensory 

perceptions based on the motor activity of the user might be particularly useful for 

those contexts where a continuous interaction of the user with the display precludes 

the possibility of easily collecting non-action judgments such as verbally communi-

cated responses.    

A further topic of interest in the study of multisensory contexts focuses on the 

effects of the congruence of different modalities on perceptions [ 68 ]. For example, 

Giordano et al. [ 37 ] measured the extent to which the congruence of the auditory 

and haptic stiffness of the virtual object influenced velocity-tracking abilities. On each 

audio-haptic trial the change in audio-haptic stiffness could be congruent (e.g., both 

the auditory and haptic stiffnesses increase above the initial level) or incongruent (e.g., 

an increase in auditory stiffness and a decrease in haptic stiffness). Only the behavioral 

effects of the change in auditory stiffness were modulated by congruence. In particular, 

when auditory stiffness changed in the opposite direction from haptic hardness, audi-

tory information appeared to have no effect on striking velocity. Further paradigms 

in the study of multimodal congruence are illustrated by Marks [ 99 ]. From a design 

point of view, measurements of the effects of multimodal congruence can, for example, 

be used to predict more accurately the perceptions of users or can inform the process 

of linking together modality-specific displays into a single multisensory interactive 

object. 

 5.11   Measurement of Acoustical Information 

 One of the frequent goals of studies on the perceptual processing of complex sounds 

is to pinpoint what sound features influence the answers of the experimental partici-

pant. From the scientific perspective, this analysis stage aims at quantifying the acous-

tical information relevant to the perception and sensory processing of complex sounds. 

From the applied point of view, this analysis makes it possible to discover those sound 

properties that should receive the attention of the sound designer in order to achieve 

a target perceptual result (e.g., maximize preference, simulate variations in the per-

ceived hardness of struck objects; see Gygi  &  Shafiro [ 58 ] for various applications of 

research on complex naturalistic sounds). 
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With most of the approaches to the characterization of the perceptually relevant 

acoustical information, a priori hypotheses about what properties of the sound might 

influence the judgments of experiment participants are necessary. To this purpose, 

each of the experimental stimuli is often characterized by a short sequence of numbers, 

each of the numbers measuring one attribute of the sound or acoustical feature (e.g., 

attack time, approximately the speed of level increase at sound onset [ 102 ]). It is 

important to note that our knowledge of the psychophysics of complex everyday 

sounds is still far from complete. Thus, the problem of defining sound features is 

largely unconstrained and can be practically endless: a large number of mathematical 

operations can indeed be adopted to describe a sound with a single number [ 41 ]. For 

these reasons, we omit from this presentation a definition of the various sound fea-

tures previously used to study the perception of complex sounds. We nonetheless 

refer the interested reader to the work of Peeters, Giordano, Susini, Misdariis, and 

McAdams [ 113 ], for a recent and extensive system for the extraction of acoustical 

features. 

 In general, two different strategies can be adopted to discover perceptually relevant 

sound features. The first operates on unmodified recordings of the sound events. We 

can term this approach  correlational  because it often relies on tests of the statistical 

association between the sound features on the one hand and some behavioral variable 

on the other. The behavioral variables can be either the responses given by the experi-

ment participant (e.g., probability of choosing the response  “ female ”  in gender catego-

rization of walking sounds [ 89 ]) or the parameters of a mathematical model of the 

behavioral data (e.g., the dimensions of an MDS model of dissimilarity ratings [ 102 ], 

see section 5.4; the parameters of a spatial model of preferences, see section 5.8). One 

of the main issues associated with the correlational approach is that different sound 

properties can be statistically associated (e.g., natural impact sounds whose level 

decays more slowly also have a longer duration [ 39 ]). Because it is not possible to tell 

which of two strongly correlated features has the strongest influence on a target 

behavioral variable, a reasonable answer to this issue has been to recognize this ambi-

guity in the data-analysis process and to eliminate the need to choose arbitrarily 

among strongly correlated features by reducing them to one single variable [ 41 ]. 

 The second approach adopted to assess perceptually relevant sound features is based 

either on the manipulation of sound recordings or on purely synthetic sounds. 

Notably, this approach somehow mitigates the features-correlation problem that char-

acterizes studies of unmodified sound stimuli. The sound-manipulation approach was 

for example adopted by Li, Logan, and Pastore [ 89 ] to investigate the identification 
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of the gender of a walker in sounds where the spectral mode (i.e., the most prominent 

spectral frequency) and the spectral slope were actively manipulated. Based on these 

stimuli, Li et al. [ 89 ] confirmed an influence of both acoustical factors, as previously 

revealed by the correlational analysis of the data collected for unmodified sounds. 

Grassi [ 46 ] investigated the extent to which various modifications of the sounds of a 

ball bouncing on a dish (e.g., removal of bounces) alter the ability to correctly estimate 

the size of the ball. Another interesting sound-manipulation paradigm has been 

adopted by Gygi et al. [ 55, 56 ] and Shafiro [ 128 ] to assess the relevance of temporal 

information for the identification of environmental sounds. In these studies the spec-

trum of the sound signals was progressively smeared while keeping the amplitude 

envelope untouched. After spectral smearing, sounds whose identification relies on 

the temporal variation of amplitude are comparatively better recognized than sounds 

whose identification relies on spectral factors. A final sound-manipulation strategy 

relies on the synthesis of novel sound stimuli. This approach was adopted by Caclin 

[ 11 ] to investigate the sound properties affecting timbre judgments. Importantly, the 

dimensions of acoustical variations of the synthetic stimuli corresponded to the acous-

tical attributes associated with the perception of unmodified musical stimuli in a pre-

vious correlational study [ 102 ]. The study by Caclin thus exemplifies the potential 

confirmatory function of sound-manipulation studies: whereas correlational studies 

can be used to generate hypotheses about what features influence the perception of 

complex sounds, sound-manipulation studies can be carried out to explicitly test these 

hypotheses. 

 A final interesting sound-manipulation approach is based on the method of  pertur-

bation analysis  [ 149 ], frequently adopted by Lutfi to investigate the perception of the 

properties of sound sources [ 91 – 94 ]. In short, perturbation analysis relies on a trial-

by-trial random perturbation of acoustical parameters of interest: if an acoustical 

parameter is relevant to the perceptual task, statistical analyses will reveal a significant 

association between the trial-specific responses and the trial-specific value of the per-

turbed acoustical parameters. In Lutfi and Oh [ 93 ] participants were presented with 

synthetic impact sounds and were asked to identify the material of the struck object. 

Sounds were generated by perturbing independently from trial to trial three parame-

ters that characterize the spectral components of an impact sound: frequency, starting 

amplitude, and decay modulus, a measure of the temporal velocity of amplitude 

decay. A statistical analysis of the association between trial-specific responses and 

synthesis parameters made it possible to measure the extent to which each of the 

participants identified materials by focusing on frequency, amplitude, or decay 

modulus. It should be noted that whereas the majority of the studies mentioned in 
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the previous paragraphs focus on global acoustical properties that characterize the 

entire sound signal (e.g., measures of the spectral distribution of energy), the molecular 

approach of Lutfi focuses on the attributes of the single spectral components that 

constitute a sound. The method of perturbation analysis has indeed never been 

applied to investigate the perceptual processing of global sound features and should 

represent an interesting methodological tool for future studies on this topic. 

5.12   Motion Capture 

Motion-capture methods are a natural choice for the analysis and evaluation of sonic 

interactions because they allow direct measurement of the motor interaction of the 

experiment participant with the sound-producing system. Being in general nonintru-

sive (no need of wires, and in some cases only very light sensors are placed on objects 

or on the body of the experiment participant), these methods allow an accurate mea-

surement of the motor interaction of the user with the sound-producing system (e.g., 

“ How do we use our body when interacting with a sonic artifact? ”  or  “ How do gestures 

and artifacts mutually influence a sonic interaction? ” ). Motion-capture techniques are 

often versatile and simple, and can also be used in real time to modify the structure 

of the sound signal reaching the user. 

 Motion-capture methods are frequently used in the study of music performance. 

Playing a musical instrument is indeed a complex form of sonic interaction in which 

the gestures of a user, the musician, ultimately trigger the generation of a musical 

sound and often influence the properties of ongoing sound events. Methods devel-

oped in this field can thus be easily generalized to the study of any type of sonic 

interaction. Within this research domain, sensors of different nature (e.g., accelerom-

eters, cameras) have been used to collect high-temporal-resolution data on the move-

ments of objects involved in the sound-generation process (e.g., hammer movements 

in a piano) and on the motor activity of the performer (e.g., motion of the arms 

and fingers of a pianist). In its most frequent application, motion capture data are 

collected for an off-line analysis. Goebl and Bresin [ 43 ] measured the effect of differ-

ent touches and of striking speed on the acceleration of the keys and hammers in 

a piano. Dahl [ 22 ] used motion capture to uncover different percussion strategies 

in drumming performance. Schelleng [ 122 ] used these techniques to measure the 

parameters of a bowing gesture necessary to optimize the quality of violin sounds. 

Dahl and Friberg [ 23 ] used motion-capture methods to analyze the quality of move-

ments interacting with sounding objects. Cameras of various kinds have been used 

to track user gestures in studies of music performance. For example, Schoonderwaldt 
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and Wanderly [ 124 ] used cameras to measure violin bowing gestures and to develop 

visual feedback methods for students in violin performance. Schoonderwaldt and 

Demoucron [ 123 ] designed a nonintrusive system combining optical motion capture 

with sensors. This system allows accurately measurement of all bowing parameters in 

bowed-string instrument performance. Video data have been captured by Dahl [ 23 ] 

to investigate the influence of visual information on the perception of emotional 

expression and gesture quality in music performance. Further methods for the study 

of body movement in music performance based on the real-time analysis of video 

data have been developed by Jensenius [ 69 ]. These methods are based on a collapsed 

visualization of vertical and horizontal motion of musicians (motiongram) as regis-

tered in video recordings and on the synchronization of the motiongram with the 

corresponding audio spectrogram (see   figure 5.10  for further explanation).    

Promising and largely unexploited applications of motion-capture data, particularly 

for the study of sonic interactions, are based on their on-line use. Indeed, motion-

capture data can, for example, be used to control in real time the parameters of a 

sound-generating algorithm based on measures of motor activity (i.e., the spatial posi-

tion, speed, and acceleration of a hand hitting and grabbing a sounding object). For 

example, in a study on percussion performance Giordano et al. [ 37 ] used measures of 

the velocity with which participants struck a virtual object to control the parameters 

of a real-time model for the generation of synthetic impact sounds. In another study 

DeWitt and Bresin [ 26 ] used the real-time gestures (speed and pressure) of a pen on a 

tablet to investigate the control of sound models mimicking the sound of a pen scrib-

bling and its emotional content. 
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 Notes 

1.   The absolute threshold can be considered as a special case of the differential threshold. For 

example, the absolute threshold for sound level can be conceived as the lowest sound level 

that can be discriminated from the lowest possible level: silence. 

2.   In this section we focus on so-called direct scaling methods which measure scales of sensation 

directly, based on judgments of sensory magnitudes.. In contrast, indirect scaling methods derive 

scales of sensory magnitude from measures of the discrimination of the stimuli [ 35 , p. 185]. 
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Direct and indirect scaling methods are largely based on the work of S. S. Stevens and L. L. 

Thurstone, respectively [ 135,142 ]. 

 3.   In common practice the paired stimuli are always different (i.e., participants never rate the 

dissimilarity between one stimulus and itself) because the mathematical models most frequently 

used to analyze the dissimilarity ratings (e.g., multidimensional scaling models, see below) do 

not take into account same-stimulus dissimilarities. It should be nonetheless noted that self-

dissimilarity data are useful for assessing whether participants correctly understood the use of 

the response scale, in which case same-stimulus dissimilarities should be on average lower than 

different-stimulus dissimilarities (see McAdams, Roussarie, Chaigne,  &  Giordano [ 100 ] for an 

example). 

 4.   Although the most popular, MDS is one of several different distance models available for 

analysing dissimilarity data; see the appendix of Giordano et al. [ 38 ]. 

 5.   In a Euclidean space, the distance between two points  A  and  B  equals  
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 where  N  equals the number of dimensions of the space. The Euclidean distance is a special case 

of the Minkowsky distance: 
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 where  p  is the power of the Minkowski metric, and the Euclidean distance equals the Minkowski 

distance for  p  = 2. Not all MDS algorithms assume a Euclidean distance: measuring the power of 

the Minkowsky metric that best accounts for the dissimilarity ratings has indeed been a research 

topic in several previous studies [ 96 , p. 149]. 

 6.   We can distinguish between metric and nonmetric MDS depending on whether model 

distances approximate a linear or monotonic transformation of the input dissimilarities, 

respectively. 

 7.   See Calvert, Spence, and Stein [ 12 ] for an excellent overview of research on multisensory 

processes.   
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